19.觀察下列數(shù)列的特點:1,2,2,3,3,3,4,4,4,4,…,其中第20項是( 。
A.5B.6C.7D.10

分析 數(shù)列1,2,2,3,3,3,4,4,4,4,…,的特點是1有1個,2有2個,3有3個,…n有n個,當n=5時,數(shù)列一共有15項,而當n=6時有6項,從而得到結(jié)論.

解答 解:數(shù)列1,2,2,3,3,3,4,4,4,4,…,的特點是1有1個,2有2個,3有3個,…n有n個
則數(shù)列一共有$\frac{n(n+1)}{2}$項,$\frac{n(n+1)}{2}$<20,
解得n≤5
當n=5時,數(shù)列一共有15項,
而當n=6時,有6項,則第20項為6,
故選:B.

點評 本題主要考查了數(shù)列的概念及簡單表示法,以及數(shù)列的應(yīng)用,同時考查了理解能力,發(fā)現(xiàn)數(shù)列特點是解題的關(guān)鍵,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)y=2sin(4x+$\frac{π}{3}$)+1的最小正周期是( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個相等的實根,且f′(x)=2x+2.
(1)求y=f(x)的圖象與兩坐標軸所圍成圖形的面積;
(2)若直線x=-t(0<t<1)把y=f(x)的圖象與兩坐標軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)全集U={0,1,2,3},集合M={1,3},則M的補集∁UM為( 。
A.{0}B.{2}C.{0,2}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè){an}是等比數(shù)列,下列結(jié)論中不正確的是(  )
A.若a1a2>0,則a2a3>0B.若a1+a3<0,則a5<0
C.若a1a2<0,則a1a5<0D.若0<a1<a2,則a1+a3>2a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.一個化肥廠生產(chǎn)甲、乙兩種混合肥料,生產(chǎn)1車皮甲、乙兩種肥料所需要的主要原料磷酸鹽、硝酸鹽如表,已知現(xiàn)庫存磷酸鹽10t、硝酸鹽66t,在此基礎(chǔ)上生產(chǎn)這兩種混合肥料,設(shè)x,y分別為計劃生產(chǎn)甲、乙兩種混合肥料的車皮數(shù).
 磷酸鹽(t)硝酸鹽(t)
生產(chǎn)1車皮甲種肥料418
生產(chǎn)1車皮乙種肥料115
(1)列出滿足生產(chǎn)條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(2)若生產(chǎn)1車皮甲種肥料,產(chǎn)生的利潤為1萬元;生產(chǎn)1車皮乙種肥料,產(chǎn)生的利潤為0.5萬,那么分別生產(chǎn)甲、乙兩種肥料各多少車皮,能夠產(chǎn)生最大的利潤?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.在△ABC中,角A,B,C所對的邊分別為a,b,c,且a=2,b=3,c=$\sqrt{7}$,則△ABC的面積是( 。
A.2B.2$\sqrt{3}$C.$\frac{\sqrt{6}}{2}$D.$\frac{3\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某食品的保鮮時間y(單位:小時)與儲存溫度x(單位:℃)滿足函數(shù)關(guān)系y=ekx+b(e為自然對數(shù)的底數(shù),k、b為實常數(shù)),若該食品在0℃的保鮮時間為120小時,在22℃的保鮮時間是30小時,則該食品在33℃的保鮮時間是15小時.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知O、A、B是平面上的三點,直線AB上有一點C,滿足:2$\overrightarrow{AC}$+$\overrightarrow{CB}$=$\overrightarrow{0}$.
(1)用向量$\overrightarrow{OA}$,$\overrightarrow{OB}$表示向量$\overrightarrow{OC}$;
(2)若|$\overrightarrow{OA}$|=1,|$\overrightarrow{OB}$|=2且向量$\overrightarrow{OA}$,$\overrightarrow{OB}$的夾角為$\frac{π}{3}$,求|$\overrightarrow{OC}$|.

查看答案和解析>>

同步練習(xí)冊答案