9.函數(shù)y=2sin(4x+$\frac{π}{3}$)+1的最小正周期是( 。
A.B.πC.$\frac{π}{2}$D.$\frac{π}{4}$

分析 利用函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,得出結(jié)論.

解答 解:函數(shù)y=2sin(4x+$\frac{π}{3}$)+1的最小正周期是$\frac{2π}{4}$=$\frac{π}{2}$,
故選:C.

點(diǎn)評 本題主要考查函數(shù)y=Asin(ωx+φ)的周期性,利用了函數(shù)y=Asin(ωx+φ)的周期為$\frac{2π}{ω}$,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,在正三棱柱ABC-A1B1C1中,點(diǎn)D、E分別為BC、B1C1的中點(diǎn),且AB=AA1=2.
(1)求證:A1E⊥C1D;
(2)求證:A1E∥平面AC1D;
(3)求直線AC1與平面BCC1B1所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知復(fù)數(shù)z滿足$\frac{1-i}{z-2}$=1+i,則在復(fù)平面內(nèi),復(fù)數(shù)z對應(yīng)的點(diǎn)在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,A,B,C是單位圓O上的點(diǎn),且A點(diǎn)的坐標(biāo)為($\frac{3}{5}$,$\frac{4}{5}$),C是圓O與x軸正半軸的交點(diǎn),∠AOB=90°.
(1)求sin∠COA;
(2)求BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.兩定點(diǎn)A(-2,1),B(2,-1),動點(diǎn)P在拋物線y=x2-2上移動,則△PAB重心G的軌跡方程是( 。
A.y=x2-$\frac{1}{3}$B.y=3x2-$\frac{2}{3}$C.y=2x2-$\frac{2}{3}$D.y=$\frac{1}{2}$x2-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.[重點(diǎn)中學(xué)做]已知tan(α-$\frac{π}{4}$)=2,則tanα=(  )
A.$\frac{1}{3}$B.3C.-$\frac{1}{3}$D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.[普通中學(xué)做]若函數(shù)f(x)=sinωx(ω>0)在[$\frac{π}{6}$,$\frac{π}{2}$]上單調(diào)遞增,則ω的取值范圍是( 0,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.(1)4a${\;}^{\frac{2}{3}}$b${\;}^{-\frac{1}{3}}$÷(-$\frac{2}{3}$a${\;}^{-\frac{1}{3}}$b${\;}^{-\frac{1}{3}}$)
(2)2a${\;}^{-\frac{1}{3}}$($\frac{1}{2}$a${\;}^{\frac{1}{3}}$-2a${\;}^{-\frac{2}{3}}$)
(3)(2a${\;}^{\frac{1}{2}}$+3b${\;}^{-\frac{1}{4}}$)(2a${\;}^{\frac{1}{2}}$-3b${\;}^{-\frac{1}{4}}$)
(4)(a2-2+a-2)÷(a2-a-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.觀察下列數(shù)列的特點(diǎn):1,2,2,3,3,3,4,4,4,4,…,其中第20項(xiàng)是( 。
A.5B.6C.7D.10

查看答案和解析>>

同步練習(xí)冊答案