18.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為( 。 
A.16B.26C.32D.20+$\frac{25}{4}\sqrt{3}$

分析 幾何體是三棱錐,根據(jù)三視圖可得三棱錐的一側(cè)棱與底面垂直,結(jié)合直觀圖求相關(guān)幾何量的數(shù)據(jù),把數(shù)據(jù)代入棱錐的表面積公式計算即可.

解答 解:根據(jù)三視圖知:該幾何體是三棱錐,且三棱錐的一個側(cè)棱與底面垂直,高為4,
如圖所示:
其中SC⊥平面ABC,SC=3,AB=4,BC=3,AC=5,SC=4,∴AB⊥BC,
由三垂線定理得:AB⊥BC,
S△ABC=$\frac{1}{2}$×3×4=6,
S△SBC=$\frac{1}{2}$×3×4=6,
S△SAC=$\frac{1}{2}$×4×5=10,
S△SAB=$\frac{1}{2}$×AB×SB=$\frac{1}{2}$×4×5=10,
∴該幾何體的表面積S=6+6+10+10=32.
故選:C.

點評 本題考查了由三視圖求幾何體的表面積,根據(jù)三視圖判斷幾何體的結(jié)構(gòu)特征及求相關(guān)幾何量的數(shù)據(jù)是解答本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知$\overrightarrow{p}$=(2cosx,sinx),$\overrightarrow{q}$=cosx,-2cosx),函數(shù)f(x)=$\overrightarrow{p}$•$\overrightarrow{q}$-a(a∈R).
(1)求函數(shù)f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)x∈[0,$\frac{π}{2}$]時,函數(shù)f(x)的最小值是-2,求f(x)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=lnx-a(x-1)(其中a>0,e是自然對數(shù)的底數(shù)).
(1)若x=$\frac{1}{e}$是函數(shù)f(x)的一個極值點,求a的值;
(2)若過原點所作曲線y=f(x)的切線l與直線y=-ex+1垂直,證明:$\frac{e-1}{e}<a<\frac{{e}^{2}-1}{e}$;
(3)設(shè)g(x)=f(x)+ex-1,當(dāng)x≥1時,g(x)≥1恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知f(x)=ex-ax2,曲線y=f(x)在(1,f(1))處的切線方程為y=bx+1.
(1)求a,b的值;
(2)求f(x)在[0,1]上的最大值;
(3)證明:當(dāng)x>0時,ex+(1-e)x-xlnx-1≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知矩形ABCD的頂點都在半徑為R的球O的球面上,且AB=6,BC=2$\sqrt{3}$,棱錐O-ABCD的體積為8$\sqrt{3}$,則R=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知⊙O的方程為x2+y2=10.
(1)求直線:x=1被⊙O截的弦AB的長;
(2)求過點(-3,1)且與⊙O相切的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)y=x2e2x的導(dǎo)數(shù)是( 。
A.y=(2x2+x2)exB.y=2xe2x+x2exC.y=2xe2x+x2e2xD.y=(2x+2x2)e2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知p:實數(shù)x滿足x2-4ax+3a2<0,其中a<0;q:實數(shù)x滿足x2+5x+4≤0,且p是q的充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若m個不全相等的正數(shù)a1,a2,…am依次圍成一個圓圈使每個ak(1≤k≤m,k∈N)都是其左右相鄰兩個數(shù)平方的等比中項,則正整數(shù)m的最小值是6.

查看答案和解析>>

同步練習(xí)冊答案