7.已知p:實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a<0;q:實(shí)數(shù)x滿足x2+5x+4≤0,且p是q的充分條件,求a的取值范圍.

分析 分別求出關(guān)于p,q成立的x的范圍,根據(jù)充分必要條件的定義得到關(guān)于a的不等式組,解出即可.

解答 解:由已知條件得,
∵實(shí)數(shù)x滿足x2-4ax+3a2<0,其中a<0,
∴(x-a)(x-3a)<0,解得:3a<x<a,
∴命題p:3a<x<a,
∵x2+5x+4≤0,
∴(x+1)(x+4)≤0
命題q:-4≤x≤-1,
p是q的充分條件,
∴$\left\{\begin{array}{l}{3a≥-4}\\{a≤-1}\end{array}\right.$,解得:-$\frac{4}{3}$≤a≤-1.

點(diǎn)評(píng) 本題考查了充分必要條件考查解不等式問題,是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)命題p:任意x>0,都有x2+x≥0,則非p為( 。
A.存在x>0,使得x2+x≥0B.存在x>0,使得x2+x<0
C.任意x≤0,都有x2+x<0D.任意x≤0,都有x2+x≥0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知某幾何體的三視圖如圖所示,則該幾何體的表面積為(  ) 
A.16B.26C.32D.20+$\frac{25}{4}\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.下列說法中正確的有③
①刻畫一組數(shù)據(jù)集中趨勢的統(tǒng)計(jì)量有極差、方差、標(biāo)準(zhǔn)差等;刻畫一組數(shù)據(jù)離散程度統(tǒng)計(jì)量有平均數(shù)、中位數(shù)、眾數(shù)等.
②拋擲兩枚硬幣,出現(xiàn)“兩枚都是正面朝上”、“兩枚都是反面朝上”、“恰好一枚硬幣正面朝上”的概率一樣大.
③有10個(gè)鬮,其中一個(gè)代表獎(jiǎng)品,10個(gè)人按順序依次抓鬮來決定獎(jiǎng)品的歸屬,則摸獎(jiǎng)的順序?qū)χ歇?jiǎng)率沒有影響.
④向一個(gè)圓面內(nèi)隨機(jī)地投一個(gè)點(diǎn),如果該點(diǎn)落在圓內(nèi)任意一點(diǎn)都是等可能的,則該隨機(jī)試驗(yàn)的數(shù)學(xué)模型是古典概型.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.求a=4,b=5,焦點(diǎn)在y軸上的雙曲線的標(biāo)準(zhǔn)方程( 。
A.$\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1B.$\frac{x^2}{16}$-$\frac{y^2}{25}$=1C.$\frac{y^2}{25}$-$\frac{x^2}{16}$=1D.$\frac{y^2}{16}$-$\frac{x^2}{25}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.過直線x+y-3=0和2x-y=0的交點(diǎn),且與直線2x+y-5=0垂直的直線方程是( 。
A.4x+2y-3=0B.4x-2y+3=0C.x+2y-3=0D.x-2y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.函數(shù)f(x)=lg(2sinx-1)的定義域?yàn)椋?\frac{π}{6}$+2kπ,$\frac{5π}{6}$+2kπ),k∈Z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)y=$\sqrt{2}$cosx在x=$\frac{π}{4}$處的切線方程為$x-y-1-\frac{π}{4}=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a>b>0,且a,b,-2這三個(gè)數(shù)可適當(dāng)排序后成等差數(shù)列,也可適當(dāng)排序后成等比數(shù)列,則a+b=5.

查看答案和解析>>

同步練習(xí)冊(cè)答案