【題目】已知函數(shù)f(x)=,g(x)=a

(1)當(dāng)a=3時(shí),解不等式(關(guān)于x的)f(x)g(x)+3.

(2)若f(x)g(x)-1 對(duì)于任意x都成立,求a的取值范圍。

【答案】(1);(2).

【解析】

(1)寫出不等式,根據(jù)絕對(duì)值零點(diǎn)進(jìn)行分段求解即可,最后各段結(jié)果取并集.

(2)對(duì)自變量進(jìn)行分類討論,分離參數(shù),利用絕對(duì)值三角不等式求解即可.

(1)當(dāng)a=3 時(shí)>3+3即-3-3>0

當(dāng)X0時(shí)4-x+3x-3>0即x>-即-<x<0

當(dāng)0<x<4時(shí)4-x-3x-3>0即x<-(舍去)

當(dāng)X4時(shí)x-4-3X-3>0即X<-

綜上所述

(2)若不等式f(x)g(x)-4恒成立即≥a-4即a+4

當(dāng)x=0時(shí)08成立

當(dāng)x0時(shí)a,因?yàn)?/span>+4≥=>0

所以1(當(dāng)且僅當(dāng)x=4時(shí)取“等號(hào)”)

所以 的最小值為1,所以a的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為常數(shù)),函數(shù),(為常數(shù),且).

(1)若函數(shù)有且只有1個(gè)零點(diǎn),求的取值的集合.

(2)當(dāng)(1)中的取最大值時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,圓軸的一個(gè)交點(diǎn)為,圓的圓心為,為等邊三角形.

求拋物線的方程;

設(shè)圓與拋物線交于兩點(diǎn),點(diǎn)為拋物線上介于兩點(diǎn)之間的一點(diǎn),設(shè)拋物線在點(diǎn)處的切線與圓交于兩點(diǎn),在圓上是否存在點(diǎn),使得直線均為拋物線的切線,若存在求出點(diǎn)坐標(biāo)(用表示);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù))的圖象為, 關(guān)于點(diǎn)的對(duì)稱的圖象為, 對(duì)應(yīng)的函數(shù)為

(Ⅰ)求函數(shù)的解析式,并確定其定義域;

(Ⅱ)若直線只有一個(gè)交點(diǎn),求的值,并求出交點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知矩形中,,為邊的中點(diǎn),將沿直線翻折成,若是線段的中點(diǎn),則在翻折過程中,下列命題:

①線段的長(zhǎng)是定值;

②存在某個(gè)位置,使;

③點(diǎn)的運(yùn)動(dòng)軌跡是一個(gè)圓;

④存在某個(gè)位置,使得

正確的個(gè)數(shù)是()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,平面,,,,的中點(diǎn).

(1)求和平面所成的角的大小.

(2)求二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程

在直角坐標(biāo)系xOy中,曲線的參數(shù)方程為為參數(shù)),M上的動(dòng)點(diǎn),P點(diǎn)滿足,點(diǎn)P的軌跡為曲線

I)求的方程;

II)在以O為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系中,射線的異于極點(diǎn)的交點(diǎn)為A,與的異于極點(diǎn)的交點(diǎn)為B,求|AB|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】鄭州一中社團(tuán)為調(diào)查學(xué)生學(xué)習(xí)圍棋的情況,隨機(jī)抽取了100名學(xué)生進(jìn)行調(diào)查.根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均學(xué)習(xí)圍棋時(shí)間的頻率分布直方圖:將日均學(xué)習(xí)圍棋時(shí)間不低于40分鐘的學(xué)生稱為“圍棋迷”.

(1)根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料你是否認(rèn)為“圍棋迷”與性別有關(guān)?

非圍棋迷

圍棋迷

合計(jì)

10

55

合計(jì)

(2)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該地區(qū)大量學(xué)生中,采用隨機(jī)抽樣方法每次抽取1名學(xué)生,抽取3次,記被抽取的3名學(xué)生中的“圍棋迷”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列,期望

附:,

0.05

0.01

3.841

6.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問50名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表,由

參照附表,得到的正確結(jié)論是

  

A. 99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

B. 99.5%以上的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

C. 在犯錯(cuò)誤的概率不超過01%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”

D. 在犯錯(cuò)誤的概率不超過01%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”

查看答案和解析>>

同步練習(xí)冊(cè)答案