1.某工廠用A,B兩種配件生產(chǎn)甲,乙兩種產(chǎn)品,已知每生成一件甲產(chǎn)品需要3個A配件和2個B配件,需要工時1h,每生產(chǎn)一件乙產(chǎn)品需要1個A配件和3個B配件,需要工時2h,該廠每天最多可從配件廠獲得13個A配件和18個B配件,工生產(chǎn)總工時不得低于作8h,若生產(chǎn)一件甲產(chǎn)品獲利5萬元,生產(chǎn)一件乙產(chǎn)品獲利3萬元,若通過恰當(dāng)?shù)纳a(chǎn),該廠每天可獲得的最大利潤為( 。
A.24萬元B.27萬元C.30萬元D.33萬元

分析 設(shè)每天生產(chǎn)甲x件,乙y件,獲利z萬元,建立約束條件和目標(biāo)函數(shù),利用線性規(guī)劃的知識進(jìn)行求解.

解答 解:設(shè)每天生產(chǎn)甲x件,乙y件,獲利z萬元,
則約束條件為$\left\{\begin{array}{l}{3x+y≤13}\\{2x+3y≤18}\\{x+2y≥8}\\{x,y∈N}\end{array}\right.$,目標(biāo)函數(shù)z=5x+3y,
作出不等式組對應(yīng)的平面區(qū)域如圖:

由z=5x+3y得y=-$\frac{5}{3}x+\frac{z}{3}$,
平移直線y=-$\frac{5}{3}x+\frac{z}{3}$,則由圖象可知當(dāng)直線y=-$\frac{5}{3}x+\frac{z}{3}$經(jīng)過點A時直線y=-$\frac{5}{3}x+\frac{z}{3}$的截距最大,
此時z最大,
由$\left\{\begin{array}{l}{3x+y=13}\\{2x+3y=18}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=4}\end{array}\right.$,即A(3,4),
此時z=5×3+3×4=15+12=27(萬元),
即該廠每天可獲得的最大利潤為27(萬元),
故選:B

點評 本題主要考查線性規(guī)劃的應(yīng)用問題,設(shè)出變量建立約束條件以及目標(biāo)函數(shù),利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖:在三棱柱ABC-A1B1C1中,∠A1B1C1=90°,A1B1=B1C1=AA1=2,且C在底面A1B1C1上的射影A1C1邊的中點,D為AC的中點,點E在CC1上,且$\overrightarrow{{C}_{1}E}$=λ$\overrightarrow{{C}_{1}C}$(0<λ<1)
(1)求證:BD丄平面ACC1A1;
(2)當(dāng)λ為何值時,二面角B1-A1E-C1的余弦值為$\frac{\sqrt{11}}{11}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.在直角坐標(biāo)系xOy中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=4cosθ}\\{y=4+4sinθ}\end{array}\right.$(θ為參數(shù)).
(1)以原點O為極點,x軸正方向為極軸建立極坐標(biāo)系,求圓C的極坐標(biāo)方程;
(2)直線l的極坐標(biāo)方程為θ=$\frac{π}{6}$,若直線l與圓C交于A、B兩點,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.由“三角形的面積等于$\frac{1}{2}$×底×高”,想到“三棱錐的體積為$\frac{1}{3}$×底面積×高”,用的是( 。
A.歸納推理B.演繹推理C.類比推理D.特殊推理

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知向量$\overrightarrow{a}$=(-2,4),$\overrightarrow$=(5,2),則$\overrightarrow{a}+\overrightarrow$=( 。
A.(3,6)B.(-10,8)C.(3,2)D.(7,6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.如圖所示,已知AB是圓O的直徑,點C,D是半圓弧的兩個三等分點,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AD}$=$\overrightarrow$,則$\overrightarrow{AC}$=( 。
A.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow$B.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow$C.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$D.-$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$、$\overrightarrow$滿足:$\overrightarrow{a}$=(3,0),|$\overrightarrow$|=2,|$\overrightarrow{a}+\overrightarrow$|=4,則|$\overrightarrow{a}-\overrightarrow$|=$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.對任意非零向量:$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$.則( 。
A.($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)B.$\overrightarrow{a}$•$\overrightarrow$=$\overrightarrow{a}$•$\overrightarrow{c}$,則$\overrightarrow$=$\overrightarrow{c}$
C.|$\overrightarrow{a}$•$\overrightarrow$|=|$\overrightarrow{a}$|•|$\overrightarrow$|D.若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$-$\overrightarrow$|,則$\overrightarrow{a}$•$\overrightarrow$=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.車廂內(nèi)有6個座位,4個人上車,共有360種不同的坐法.

查看答案和解析>>

同步練習(xí)冊答案