【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

【答案】D

【解析】

根據(jù)圖表中提供的信息,對(duì)應(yīng)各選項(xiàng)即可判斷其真假.

對(duì)于A,由圖可知,2020219日,武漢市新增新冠肺炎確診病例從218日的1660人大幅下降至615人,所以A正確;

對(duì)于B,從2020219日起至229日,武漢市新增新冠肺炎確診病例大約在300-615之間,3月起繼續(xù)減少,沒有出現(xiàn)大幅增加,所以B正確;

對(duì)于C,由圖可知,2020219日至32日,武漢市新增新冠肺炎確診病例低于400人的有,220日,21日,23日,25日,26日,27日,31日,2日,共8天,所以C正確;

對(duì)于D,2020215日到32日中,武漢市新增新冠肺炎確診病例最多的是2161690例,最少的是32111例,1690-111=1579,所以D不正確.

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下圖是2020215日至32日武漢市新增新冠肺炎確診病例的折線統(tǒng)計(jì)圖.則下列說法不正確的是(

A.2020219日武漢市新增新冠肺炎確診病例大幅下降至三位數(shù)

B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低

C.2020219日至32日武漢市新增新冠肺炎確診病例低于400人的有8

D.2020215日到32日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線的焦點(diǎn)為,過焦點(diǎn)做傾斜角為的120°的直線交,兩點(diǎn),為坐標(biāo)原點(diǎn),

1)求拋物線的方程;

2)過拋物線焦點(diǎn),且與坐標(biāo)軸不垂直的直線l交拋物線于,兩點(diǎn),在拋物線上,且,,若,,四點(diǎn)都在圓上,求圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項(xiàng)和分別為,且,,,其中為常數(shù).

1)若,.

①求數(shù)列的通項(xiàng)公式;

②求數(shù)列的通項(xiàng)公式.

2)若,.求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直三棱柱ABCA1B1C1中,ABBC,BB1BC,DCC1的中點(diǎn).

1)證明:B1C⊥平面ABD;

2)若ABBC,EA1C1的中點(diǎn),求二面角ABDE的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2019年第十三屆女排世界杯共12支參賽球隊(duì),比賽賽制釆取單循環(huán)方式,即每支球隊(duì)進(jìn)行11場(chǎng)比賽,最后靠積分選出最后冠軍.積分規(guī)則如下(比賽采取53勝制):比賽中以3—03—1取勝的球隊(duì)積3分,負(fù)隊(duì)積0分;而在比賽中以3—2取勝的球隊(duì)積2分,負(fù)隊(duì)積1分.9輪過后,積分榜上的前2名分別為中國隊(duì)和美國隊(duì),中國隊(duì)積26分,美國隊(duì)積22分.第10輪中國隊(duì)對(duì)抗塞爾維亞隊(duì),設(shè)每局比賽中國隊(duì)取勝的概率為

1)第10輪比賽中,記中國隊(duì)3—1取勝的概率為,求的最大值點(diǎn)

2)以(1)中的作為的值.

i)在第10輪比賽中,中國隊(duì)所得積分為,求的分布列;

)已知第10輪美國隊(duì)積3分,判斷中國隊(duì)能否提前一輪奪得冠軍(第10輪過后,無論最后一輪即第11輪結(jié)果如何,中國隊(duì)積分最多)?若能,求出相應(yīng)的概率;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義:是無窮數(shù)列,若存在正整數(shù)k使得對(duì)任意,均有則稱是近似遞增(減)數(shù)列,其中k叫近似遞增(減)數(shù)列的間隔數(shù)

1)若,是不是近似遞增數(shù)列,并說明理由

2)已知數(shù)列的通項(xiàng)公式為,其前n項(xiàng)的和為,若2是近似遞增數(shù)列的間隔數(shù),求a的取值范圍:

3)已知,證明是近似遞減數(shù)列,并且4是它的最小間隔數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,己知圓C經(jīng)過點(diǎn)(),(,),且與直線相切.

1)求圓C的方程;

2)設(shè)P是直線lx4上的任意一點(diǎn),過點(diǎn)P作圓C的切線,切點(diǎn)為M,N.

①求證:直線MN過定點(diǎn)(記為Q);

②設(shè)直線PQ與圓C交于點(diǎn)AB,與y軸交于點(diǎn)D.,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在極坐標(biāo)系中,已知點(diǎn)到直線的距離為3.

1)求實(shí)數(shù)的值;

2)設(shè)是直線上的動(dòng)點(diǎn),在線段上,且滿足,求點(diǎn)軌跡方程,并指出軌跡是什么圖形.

查看答案和解析>>

同步練習(xí)冊(cè)答案