19.不查表求tan105°的值為-2-$\sqrt{3}$.

分析 根據(jù)tan105°=tan(60°+45°),利用兩角和的正切公式求得它的值.

解答 解:tan105°=tan(60°+45°)=$\frac{tan60°+tan45°}{1-tan60°tan45°}$=$\frac{\sqrt{3}+1}{1-\sqrt{3}•1}$=-2-$\sqrt{3}$,
故答案為:-2-$\sqrt{3}$.

點(diǎn)評 本題主要考查兩角和的正切公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.某城市個人家庭用車的月均消費(fèi)汽油費(fèi)X~N(900,400)(單位:元),試求:
(Ⅰ)該城市個人家庭用車的月均消費(fèi)汽油費(fèi)在(900,920)(單位:元)范圍內(nèi)的人數(shù)所占的百分比;
(Ⅱ)該城市個人家庭用車的月汽油消費(fèi)超過940元的人數(shù)所占的百分比;
(Ⅲ)如果該城市個人家庭用車的人數(shù)是10萬人,市政府想利用經(jīng)濟(jì)手段控制汽油消耗,制定了下列專項稅收如表:
個人家庭用車消費(fèi)汽油費(fèi)≤880元/月880~920元/月920~940元/月≥940元/月
稅 率不納稅0.010.020.05
請用數(shù)據(jù)說明該城市在此稅收上設(shè)計是否合理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{k(x+2),x≤0}\\{-lnx,x>0}\end{array}\right.$(k<0),若函數(shù)y=f(f(x))-1有3個零點(diǎn),則實(shí)數(shù)k的取值范圍為k<-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,圓C與圓D半徑分別為r1,r2,相交于A,B兩點(diǎn),直線l1過點(diǎn)A,分別交圓C、圓D于點(diǎn)M、N(M、N在A的異側(cè)),直線l2過點(diǎn)B,分別交圓C、圓D于點(diǎn)P,Q(P、Q在B的異側(cè)),且l1平行于
l2,點(diǎn)C,D在l1與l2之間.
(1)求證:四邊形MNQP為平行四邊形;
(2)若四邊形MABP面積與四邊形NABQ面積相等,求證:線段AB與線段IJ互相平分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的離心率為$\frac{1}{2}$,點(diǎn)F1,F(xiàn)2是橢圓E的左、右焦點(diǎn),過定點(diǎn)Q(0,2)的動直線l與橢圓E交于A,B兩點(diǎn),當(dāng)F1,A,B共線時,△F2AB的周長為8.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)設(shè)弦AB的中點(diǎn)為D,點(diǎn)E(0,t)在y軸上,且滿足DE⊥AB,試求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知四面體ABCD中,AB、AC、AD兩兩垂直,且AB=1,AC=2,AD=4,則點(diǎn)A到平面BCD的距離是(  )
A.$\frac{2}{{\sqrt{21}}}$B.$\frac{3}{{\sqrt{21}}}$C.$\frac{4}{{\sqrt{21}}}$D.$\frac{5}{{\sqrt{21}}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.一個多面體從前面、后面、左側(cè)、右側(cè)、上方看到的圖形分別如圖所示(其中每個正方形邊長都為1),則該多面體的體積為$\frac{5}{6}$,表面積為$\frac{9+\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-2x,x≤0}\\{-{x}^{2}+x,x>0}\end{array}\right.$,若函數(shù)g(x)=f(x)-a恰有三個互不相同的零點(diǎn)x1,x2,x3,則x1x2x3的取值范圍是( 。
A.(-$\frac{1}{32}$,0)B.(-$\frac{1}{16}$,0)C.(0,$\frac{1}{32}$)D.(0,$\frac{1}{16}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知集合A={y|y=|x|-2,x∈Z},B={x|x≥-2},則下列結(jié)論正確的是( 。
A.-3∈AB.A=BC.A∩B=AD.A∪B=Z

查看答案和解析>>

同步練習(xí)冊答案