精英家教網 > 高中數學 > 題目詳情

【題目】一家商場銷售一種商品,該商品一天的需求量在范圍內等可能取值,該商品的進貨量也在范圍內取值(每天進貨1次).這家商場每銷售一件該商品可獲利60元;若供不應求,可從其他商店調撥,銷售一件該商品可獲利40元;若供大于求,剩余的每處理一件該商品虧損20.設該商品每天的需求量為,每天的進貨量為件,該商場銷售該商品的日利潤為.

1)寫出這家商場銷售該商品的日利潤為關于需求量的函數表達式;

2)寫出供大于求,銷售件商品時,日利潤的分布列;

3)當進貨量多大時,該商場銷售該商品的日利潤的期望值最大?并求出日利潤的期望值的最大值.

【答案】1;(2)分布列見解析;(3

【解析】

1)根據題意,該商品每天的需求量為,進貨量為,分段求出時,利潤為關于需求量的函數表達式;

2)當供大于應求時,每種情況的概率都為,即可求出日利潤為的分布列;

3)分別求出日利潤,得出的分布列,即可求出日利潤的數學期望,根據二次函數的性質,可知是日利潤的期望值最大,即可求出期望值的最大值.

解:(1)因為該商品每天的需求量為,進貨量為,

該量販銷售該商品的日利潤為關于需求量的函數表達式為:

化簡得:,

2)供大于應求時,日利潤為的分布列:

.

.

3)日利潤為的分布列:

的數學期望為:

,

數學期望值最大,

為自然數,經驗證.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】中,角、、所對的邊分別為、,,當角取最大值時,的周長為,則__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓()的離心率,以上頂點和右焦點為直徑端點的圓與直線相切.

1)求橢圓的標準方程.

2)是否存在斜率為2的直線,使得當直線與橢圓有兩個不同的交點時,能在直線上找到一點,在橢圓上找到一點,滿足?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】謝爾賓斯基三角形(Sierpinskitriangle)是由波蘭數學家謝爾賓斯基在1915年提出的,如圖先作一個三角形,挖去一個中心三角形(即以原三角形各邊的中點為頂點的三角形),然后在剩下的小三角形中又挖去一個中心三角形,我們用白色三角形代表挖去的面積,那么灰色三角形為剩下的面積(我們稱灰色部分為謝爾賓斯基三角形).若通過該種方法把一個三角形挖3次,然后在原三角形內部隨機取一點,則該點取自謝爾賓斯基三角形的概率為______

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,其中為常數.

1)討論函數的單調性;

2)當為自然對數的底數),時,若方程有兩個不等實數根,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校在高一部分學生中調查男女同學對某項體育運動的喜好情況,其二維條形圖如圖(黑色代表喜好,白色代表不喜好).

1)寫出列聯表;

2)能否有99%的把握認為喜好這項體育運動與性別有關;

3)在這次調查中從喜好這項體育活動的一名男生和兩名女生中任選兩人進行專業(yè)培訓,求恰是一男一女的概率.

附:

0.25

0.010

0.005

0.001

5.024

6.635

7.879

10.83

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.

1求橢圓的標準方程;

2為等腰三角形,求點的坐標;

3,求的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,在矩形中,,的中點中點.將沿折起到,使得平面平面(如圖2).

(1)求證:

(2)求直線與平面所成角的正弦值;

(3)在線段上是否存在點,使得平面? 若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】20191216日,公安部聯合阿里巴巴推出的“錢盾反詐機器人”正式上線,當普通民眾接到電信網絡詐騙電話,公安部錢盾反詐預警系統預警到這一信息后,錢盾反詐機器人即自動撥打潛在受害人的電話予以提醒,來電信息顯示為“公安反詐專號”.某法制自媒體通過自媒體調查民眾對這一信息的了解程度,從5000多參與調查者中隨機抽取200個樣本進行統計,得到如下數據:男性不了解這一信息的有50人,了解這一信息的有80人,女性了解這一信息的有40.

1)完成下列列聯表,問:能否在犯錯誤的概率不超過0.01的前提下,認為200個參與調查者是否了解這一信息與性別有關?

了解

不了解

合計

男性

女性

合計

2)該自媒體對200個樣本中了解這一信息的調查者按照性別分組,用分層抽樣的方法抽取6人,再從這6人中隨機抽取3人給予一等獎,另外3人給予二等獎,求一等獎與二等獎獲得者都有女性的概率.

附:

P(K2k)

0.01

0.005

0.001

k

6.635

7.879

10.828

查看答案和解析>>

同步練習冊答案