函數(shù)f(x)=2sin2
π
4
x+
4
),求最小正周期.
考點:二倍角的余弦,三角函數(shù)的周期性及其求法
專題:三角函數(shù)的求值,三角函數(shù)的圖像與性質(zhì)
分析:由二倍角的余弦公式可化簡求得解析式,從而根據(jù)三角函數(shù)的周期性及其求法即可求值.
解答: 解:∵f(x)=2sin2
π
4
x+
4
)=1-cos(
πx
2
+
2
),
∴T=
π
2
=4
故函數(shù)f(x)的最小正周期是4.
點評:本題主要考察了二倍角的余弦的應(yīng)用,三角函數(shù)的周期性及其求法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a=log 
1
3
5,b=3 
1
5
,c=(
1
5
0.3,則有(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+1
x
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合P={x|-1<x<3},Q={x|-2<x<1},則P∩Q=( 。
A、(-2,1)
B、(-2,3)
C、(1,3)
D、(-1,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若實數(shù)a,b滿足條件a2+b2-2a-4b+1=0,則代數(shù)式
b
a+b
的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)ω>0,m>0.若函數(shù)f(x)=msin
ωx
2
cos
ωx
2
在區(qū)間[-
π
3
,
π
3
]上單調(diào)遞增,則w的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3+ax2圖象上一點P(1,b)處的切線斜率為-3,g(x)=x3+
t-6
2
x2-(t+1)x+3(t>0),
(1)求a、b的值;
(2)當x∈[-1,4]時,求f(x)的值域;
(3)當x∈[1,4]時,不等式f(x)≤g(x)恒成立,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知過點A(1,0)且斜率為k的直線l與圓C:(x-3)2+(y-2)2=1相交于P、Q兩點,則AP•AQ的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知在等比數(shù)列{an}中,前n項和為Sn,Sn=48,S2n=60,則S3n=
 

查看答案和解析>>

同步練習(xí)冊答案