20.已知函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(1)判斷f(x)的奇偶性;
(2)用單調(diào)性定義證明f(x)在(0,+∞)上為減函數(shù).
(3)已知f(x+1)+f(2x-3)<0,求實(shí)數(shù)x的取值范圍.

分析 (1)計(jì)算f(-x)與±f(x)的關(guān)系即可判斷出結(jié)論.
(2)f(x)=1+$\frac{2}{{2}^{x}-1}$.?0<x1<x2,可得f(x1)-f(x2)=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$,即可判斷出符號(hào).
(3)由f(x+1)+f(2x-3)<0,可得f(x+1)<-f(2x-3)=f(3-2x),又奇函數(shù)f(x)在(0,+∞)上為減函數(shù),即可得出.

解答 (1)解:∵函數(shù)f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$,(x≠0),
∴f(-x)=$\frac{{2}^{-x}+1}{{2}^{-x}-1}$=$\frac{1+{2}^{x}}{1-{2}^{x}}$=-f(x),
∴函數(shù)f(x)是奇函數(shù).
(2)證明:f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$=1+$\frac{2}{{2}^{x}-1}$.
?0<x1<x2
∴f(x1)-f(x2)=1+$\frac{2}{{2}^{{x}_{1}}-1}$-$(1+\frac{2}{{2}^{{x}_{2}}-1})$=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$,
∵0<x1<x2,∴${2}^{{x}_{2}}$>${2}^{{x}_{1}}$,${2}^{{x}_{1}}$>1,${2}^{{x}_{2}}$>1.
∴f(x1)-f(x2)=$\frac{2({2}^{{x}_{2}}-{2}^{{x}_{1}})}{({2}^{{x}_{1}}-1)({2}^{{x}_{2}}-1)}$>0,
∴f(x1)>f(x2),
∴f(x)在(0,+∞)上為減函數(shù).
(3)解:∵f(x+1)+f(2x-3)<0,
∴f(x+1)<-f(2x-3)=f(3-2x),
又奇函數(shù)f(x)在(0,+∞)上為減函數(shù),
∴x+1>3-2x>0,或0>x+1>3-2x,
解得:x>$\frac{3}{2}$或x∈∅.
∴實(shí)數(shù)x的取值范圍是$(\frac{3}{2},+∞)$.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性奇偶性及其應(yīng)用,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知不等式$ax-\frac{1}{a}>0$的解集為(1,+∞),則a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$A=\left\{{\left.x\right|y=\sqrt{2x-{x^2}}}\right\}$,$B=\left\{{\left.y\right|y=2-\frac{1}{{{x^2}+1}}}\right\}$,則A∩B=( 。
A.[1.2]B.(1.2]C.[1.2)D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖所示的四棱錐P-ABCD中,已知PA⊥平面ABCD,AD∥BC,∠BAD=90°,PA=$\sqrt{2}$,AB=BC=1,AD=2,E為PD中點(diǎn).
(1)求證:CE∥平面PAB;
(2)求證:平面PAC⊥平面PDC;
(3)求二面角P-CD-A的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.求經(jīng)過點(diǎn)A(-3,2),且與$\frac{x^2}{9}+\frac{y^2}{4}=1$有相同焦點(diǎn)的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知△ABC的頂點(diǎn)為A(3,4),B(8,6),C(2,k),其中k為常數(shù),如果∠A=∠B,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.三次函數(shù)f(x)=$\frac{a}{3}$x3+bx2+cx+d,f'(x)-9x<0的解集為(1,2).
(1)若f'(x)+7a=0有兩個(gè)相等的實(shí)數(shù)根,求f'(x)的解析式;
(2)若f(x)在(-∞,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知$\overrightarrow m$=(2sinx,2cosx),$\overrightarrow n$=(cos$\frac{π}{3}$,-sin$\frac{π}{3}$),f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(Ⅰ)求f($\frac{π}{2}$)的值及f(x)的最大值;
(Ⅱ)若函數(shù)g(x)=f($\frac{π}{2}$x),求g(1)+g(2)+g(3)+…+g(2014)+g(2015);
(Ⅲ) 若函數(shù)h(x)=$\frac{{sinx•{f^2}(x+\frac{π}{3})-8}}{{1+{{cos}^2}x}}$在區(qū)間[-$\frac{5π}{4}$,$\frac{5π}{4}$]上的最大值為M,最小值為m,求M+m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l在y軸上的截距為-2,且垂直于直線x-2y-1=0.
(1)求直線l的方程;
(2)設(shè)直線l與兩坐標(biāo)軸分別交于A、B兩點(diǎn),△OAB內(nèi)接于圓C,求圓C的一般方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案