精英家教網 > 高中數學 > 題目詳情
9.已知$\overrightarrow m$=(2sinx,2cosx),$\overrightarrow n$=(cos$\frac{π}{3}$,-sin$\frac{π}{3}$),f(x)=$\overrightarrow m$•$\overrightarrow n$+1.
(Ⅰ)求f($\frac{π}{2}$)的值及f(x)的最大值;
(Ⅱ)若函數g(x)=f($\frac{π}{2}$x),求g(1)+g(2)+g(3)+…+g(2014)+g(2015);
(Ⅲ) 若函數h(x)=$\frac{{sinx•{f^2}(x+\frac{π}{3})-8}}{{1+{{cos}^2}x}}$在區(qū)間[-$\frac{5π}{4}$,$\frac{5π}{4}$]上的最大值為M,最小值為m,求M+m的值.

分析 (I)由題意易得f(x)的解析式,可得f($\frac{π}{2}$)的值及f(x)的最大值;
(Ⅱ)可得g(x)的解析式,可得g(x)的周期T=4,易得結果;
(Ⅲ)化簡可得h(x)的解析式,由函數的奇偶性可得.

解答 解:(I)∵$\overrightarrow m=(2sinx,2cosx)$,$\overrightarrow n=(cos\frac{π}{3},-sin\frac{π}{3})$,$f(x)=\overrightarrow m•\overrightarrow n+1$
∴$f(x)=2sinxcos\frac{π}{3}-2cosxsin\frac{π}{3}+1$,
∴$f(x)=2sin({x-\frac{π}{3}})+1$,
∴$f(\frac{π}{2})=2$,
∴f(x)max=3;
(Ⅱ)$g(x)=f(\frac{π}{2}x)=2sin(\frac{π}{2}x-\frac{π}{3})+1$T=4$g(1)=2,g(2)=\sqrt{3}+1,g(3)=0,g(4)=-\sqrt{3}+1$,
g(1)+g(2)+g(3)+…+g(2014)+g(2015)=4×503+g(2013)+g(2014)+g(2015)=$2012+2+\sqrt{3}+1$=$2015+\sqrt{3}$;
(Ⅲ)∵$h(x)=\frac{{sinx•{f^2}(x+\frac{π}{3})-8}}{{1+{{cos}^2}x}}=\frac{{sinx•{{(2sinx+1)}^2}-8}}{{1+{{cos}^2}x}}$
=$\frac{{4{{sin}^3}x+4sin{x^2}+sinx-8}}{{1+{{cos}^2}x}}$=$\frac{{4{{sin}^3}x+sinx+4(1-cos{x^2})-8}}{{1+{{cos}^2}x}}$
=$\frac{{4{{sin}^3}x+sinx-4-4cos{x^2}}}{{1+{{cos}^2}x}}$=$\frac{{4{{sin}^3}x+sinx}}{{1+{{cos}^2}x}}-4$.
令$t(x)=\frac{{4{{sin}^3}x+sinx}}{{1+{{cos}^2}x}}$,t(-x)=-t(x),
∴t(x)為奇函數,因為奇函數圖象關于原點對稱,
∴在$[-\frac{5π}{4},\frac{5π}{4}]$上t(x)max+t(x)min=0,
∴M+m=(t(x)max-4)+(t(x)min-4)=-8.

點評 本題考查三角函數公式,涉及函數的周期性和奇偶性,屬中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

19.設x,y滿足約束條件$\left\{\begin{array}{l}{x+y≤1}\\{y≤x}\\{y≥-2}\end{array}\right.$,則z=x+y的最大值為( 。
A.1B.2C.0.5D.1.5

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知函數f(x)=$\frac{{2}^{x}+1}{{2}^{x}-1}$.
(1)判斷f(x)的奇偶性;
(2)用單調性定義證明f(x)在(0,+∞)上為減函數.
(3)已知f(x+1)+f(2x-3)<0,求實數x的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

17.已知命題p:m2-m-6≥0,命題q:$\frac{x^2}{m}+\frac{y^2}{2}$=1表示焦點在x軸上的橢圓,若“p且q”與“非q”同時為假命題,求m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

4.函數f(x)是定義在R上的偶函數,且周期為2,當0≤x≤1時,f(x)=x2,若直線y=x+a與曲線y=f(x)恰有兩個公共點,則實數a的值為( 。
A.n(n∈Z)B.2n(n∈Z)C.2n或2n-$\frac{1}{4}$(n∈Z)D.n或n-$\frac{1}{4}$(n∈Z)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

14.已知函數f(x)=cos(x+$\frac{π}{4}$)sinx,則函數f(x)的圖象( 。
A.最小正周期為T=2πB.關于點($\frac{π}{8}$,-$\frac{\sqrt{2}}{4}$)對稱
C.在區(qū)間(0,$\frac{π}{8}$)上為減函數D.關于直線x=$\frac{π}{8}$對稱

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.已知公差d>0的等差數列{an}中,a1=10,且a1,2a2+2,5a3成等比數列.
(1)求公差d及通項an;
(2)設Sn=$\frac{1}{{{a_1}{a_2}}}$+$\frac{1}{{{a_2}{a_3}}}$+…+$\frac{1}{{{a_n}{a_{n+1}}}}$,求Sn

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

18.已知三個正數a,b,c為等比數列,則$\frac{a+c}$+$\frac{a+c}$的最小值為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

19.函數f(x)=lnx+3x-10的零點所在的大致范圍是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

同步練習冊答案