已知函數(shù)的定義域?yàn)镽,對(duì)任意,均有
,且對(duì)任意都有。
(1)試證明:函數(shù)在R上是單調(diào)函數(shù);
(2)判斷的奇偶性,并證明。
(3)解不等式。
(4)試求函數(shù)在上的值域;
(1)證明略
(2)奇函數(shù),證明略
(3)
(4)
解析
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題13分)已知函數(shù)
(1)判斷函數(shù)的奇偶性;
(2)若在區(qū)間是增函數(shù),求實(shí)數(shù)的 取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿(mǎn)分14分)已知函數(shù)
(1)判斷的奇偶性并證明;
(2)若的定義域?yàn)閇](),判斷在定義域上的增減性,并加以證明;
(3)若,使的值域?yàn)閇]的定義域區(qū)間[]()是否存在?若存在,求出[],若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)已知定義域?yàn)?i>R的函數(shù)是奇函數(shù).
(I)求a的值,并指出函數(shù)的單調(diào)性(不必說(shuō)明單調(diào)性理由);
(II)若對(duì)任意的,不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
若函數(shù)f(x)是以2為周期的偶函數(shù) ,且當(dāng)x∈(0 ,1)時(shí) ,
f(x) = -1 .(1)求x∈(-1 ,1)時(shí) f(x)的解析式 ;(2)求f()的值 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分12分)設(shè),其中,且(為自然對(duì)數(shù)的底)
(1)求的關(guān)系;
(2)在其定義域內(nèi)的單調(diào)函數(shù),求的取值范圍;
(3)求證:(i)
(ii) ()。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù)是定義在(-1,1)上的奇函數(shù),且。
(1)試求出函數(shù)的解析式;
(2)證明函數(shù)在定義域內(nèi)是單調(diào)增函數(shù)。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿(mǎn)分13分)已知函數(shù)
(1)畫(huà)出函數(shù)的圖象;
(2)利用圖象回答:當(dāng)為何值時(shí),方程有一個(gè)解?有兩個(gè)解?有三個(gè)解?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com