精英家教網 > 高中數學 > 題目詳情

【題目】已知圓與圓,點在圓上,點在圓上.

(1)求的最小值;

(2)直線上是否存在點,滿足經過點由無數對相互垂直的直線,它們分別與圓和圓相交,并且直線被圓所截得的弦長等于直線被圓所截得的弦長?若存在,求出點的坐標;若不存在,請說明理由.

【答案】(1);(2)存在點滿足題意

【解析】試題分析:(1)根據圓的幾何條件可得為兩圓心連線與兩圓交點時最小,再根據兩點間距離公式計算結果(2)兩弦長相等轉化為對應圓心距相等,根據點到直線距離公式展開得關于斜率k的恒等式,再根據恒等式成立的條件解出點坐標

試題解析:(1)為兩圓心連線與兩圓交點時最小,此時

(2)設,斜率不存在時不符合題意,舍去;斜率存在時,則, ,

由題意可知,兩弦長相等也就是相等即可,故,化簡得: 對任意恒成立,故,解得,故存在點滿足題意.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知中心在原點,焦點在軸上的橢圓過點,離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點,且與橢圓交于兩點,若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某大理石工廠初期花費98萬元購買磨大理石刀具,第一年需要各種費用12萬元,從第二年起,每年所需費用比上一年增加4萬元,該大理石加工廠每年總收入50萬元.

(1)到第幾年末總利潤最大,最大值是多少?

(2)到第幾年末年平均利潤最大,最大值是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知二次函數f(x)=ax2+bx+c(a≠0)的圖象過點(0,1)且與x軸有唯一的交點(﹣1,0).
(1)求f(x)的表達式;
(2)在(1)的條件下,設函數F(x)=f(x)﹣mx,若F(x)在區(qū)間[﹣2,2]上是單調函數,求實數m的取值范圍;
(3)設函數g(x)=f(x)﹣kx,x∈[﹣2,2],記此函數的最小值為h(k),求h(k)的解析式.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列各組函數中表示同一函數的是(
①f(x)= 與g(x)=x
②f(x)=|x|與g(x)=
③f(x)=x0與g(x)=
④f(x)=x2﹣2x﹣1與g(t)=t2﹣2t﹣1.
A.①③
B.②③
C.③④
D.①④

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設函數,若方程恰有兩個不相等的實根,則的最大值為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某電視臺舉行一個比賽類型的娛樂節(jié)目, 兩隊各有六名選手參賽,將他們首輪的比賽成績作為樣本數據,繪制成莖葉圖如圖所示,為了增加節(jié)目的趣味性,主持人故意將隊第六位選手的成績沒有給出,并且告知大家隊的平均分比隊的平均分多4分,同時規(guī)定如果某位選手的成績不少于21分,則獲得“晉級”.

(1)根據莖葉圖中的數據,求出隊第六位選手的成績;

(2)主持人從隊所有選手成績中隨機抽2個,求至少有一個為“晉級”的概率;

(3)主持人從兩隊所有選手成績分別隨機抽取2個,記抽取到“晉級”選手的總人數為,求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)生產一種機器的固定成本為0.5萬元,但每生產1百臺時,又需可變成本(即另增加投入)0.25萬元.市場對此商品的年需求量為5百臺,銷售的收入(單位:萬元)函數為:R(x)=5x﹣ x2(0≤x≤5),其中x是產品生產的數量(單位:百臺).
(1)將利潤表示為產量的函數;
(2)年產量是多少時,企業(yè)所得利潤最大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】F1,F2分別是橢圓E ab0)的左、右焦點,過點F1的直線交橢圓EA,B兩點,|AF1|=3|BF1|,若cosAF2B=,則橢圓E的離心率為(。

A. B. C. D.

查看答案和解析>>

同步練習冊答案