【題目】已知函數(shù)f(x)=xex-alnx(無理數(shù)e=2.718…).

(1)若f(x)在(0,1)單調遞減,求實數(shù)a的取值范圍;

(2)當a=-1時,設g(x)=x(f(x)-xex)-x3+x2-b,若函數(shù)g(x)存在零點,求實數(shù)b的最大值.

【答案】(1)a≥2e;(2)0

【解析】

(1)由題得≤0,即a≥(x2+x)ex在(0,1)上恒成立,再構造函數(shù)求函數(shù)的最大值即得解;(2)問題等價于方程b=xlnx-x3+x2在(0,+∞)上有解,先證lnx≤x-1(x>0),再求得b的最大值為0.

(1),

由題意:≤0,x∈(0,1)恒成立,即(x2+x)ex-a≤0,

也就是a≥(x2+x)ex在(0,1)上恒成立,

設h(x)=(x2+x)ex,

=ex(2x+1)+(x2+x)ex=ex(x2+3x+1),

當x∈(0,1)時,x2+3x+1>0,

)>0,h(x)在(0,1)單調遞增,h(x)<h(1)=2e,

因此a≥2e.

(2)當a=-1時,f(x)=xex+lnx,g(x)=xlnx-x3+x2-b,

由題意:問題等價于方程b=xlnx-x3+x2在(0,+∞)上有解,

先證:lnx≤x-1(x>0),事實上:設y=lnx-x+1,則,

,x=1,x∈(0,1)時,y'>0函數(shù)遞增,x∈(1,+∞)時,y'<0函數(shù)遞減,

ymax=y(tǒng)|x=1=0,即y≤0,也就是lnx≤x-1.

由此:k(x)=xlnx-x3+x2≤x(x-1)-x3+x2=2x2-x-x3=-x(x2-2x+1)≤0,

故當x=1時,k(1)=0,所以b的最大值為0.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,AB=2AD=2,∠DAB=60°PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求證:CBPD

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)兩個共軛復數(shù)的差是純虛數(shù);(2)兩個共軛復數(shù)的和不一定是實數(shù);(3)若復數(shù)是某一元二次方程的根,則是也一定是這個方程的根;(4)若為虛數(shù),則的平方根為虛數(shù),其中正確的個數(shù)為 ( )

A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的直角坐標為,點M的極坐標為,若直線l過點P,且傾斜角為,圓CM為圓心,1為半徑.

1)求直線l的參數(shù)方程和圓C的極坐標方程.

2)設直線l與圓C相交于AB兩點,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐M-ABCD中,MB⊥平面ABCD,四邊形ABCD是矩形,AB=MB,E、F分別為MA、MC的中點.

(1)求證:平面BEF⊥平面MAD;

(2)若,求三棱錐E-ABF的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐C的底面是正方形,PA⊥平面ABCD,PA=2,∠PDA=45°,點E、F分別為棱AB、PD的中點.

(1)求證:AF∥平面PEC

(2)求證:平面PCD⊥平面PEC;

(3)求三棱錐C-BEP的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為為坐標原點,是拋物線上異于的兩點.

(1)求拋物線的方程;

(2)若直線的斜率之積為,求證:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從拋物線上任意一點Px軸作垂線段,垂足為Q,點M是線段上的一點,且滿足

(1)求點M的軌跡C的方程;

(2)設直線與軌跡c交于兩點,TC上異于的任意一點,直線,分別與直線交于兩點,以為直徑的圓是否過x軸上的定點?若過定點,求出符合條件的定點坐標;若不過定點,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐,,,為等邊三角形,平面平面,中點.

(1)求證:平面;

(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案