已知函數(shù)f(x)=(x2+ax+2)ex,(x,a∈R).
(1)當(dāng)a=0時(shí),求函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程;
(2)若函數(shù)y=f(x)為單調(diào)函數(shù),求實(shí)數(shù)a的取值范圍;
(3)當(dāng)時(shí),求函數(shù)f(x)的極小值.
(1) 5ex-y-2e="0" (2) [-2,2] (3)

試題分析:f′(x)=ex[x2+(a+2)x+a+2]
(1)當(dāng)a=0時(shí),f(x)=(x2+2)ex,f′(x)=ex(x2+2x+2),f(1)=3e,
f′(1)=5e,
∴函數(shù)f(x)的圖象在點(diǎn)A(1,f(1))處的切線方程為y-3e=5e(x-1),即5ex-y-2e=0.
(2)f′(x)=ex[x2+(a+2)x+a+2],
考慮到ex>0恒成立且x2系數(shù)為正.
∴f(x)在R上單調(diào)等價(jià)于x2+(a+2)x+a+2≥0恒成立.
∴(a+2)2-4(a+2)≤0.
解得-2≤a≤2,即a的取值范圍是[-2,2],
(3)當(dāng)時(shí),f(x)=,
f′(x)=
令f′(x)=0,得或x=1.
令f′(x)>0,得或x>1.
令f′(x)<0,得
x,f′(x),f(x)的變化情況如下表

所以,函數(shù)f(x)的極小值為
點(diǎn)評(píng):注意極值與最值的區(qū)別和聯(lián)系:最大值是極值與邊界值中最大的函數(shù)值,最小值是極值與邊界值中最小的函數(shù)值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題16分)已知函數(shù)滿足滿足;
(1)求的解析式及單調(diào)區(qū)間;
(2)若,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的導(dǎo)函數(shù)為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線C:y = x2 + x 在 x =" 1" 處的切線與直線ax-y+1= 0互相垂直,則實(shí)數(shù)a的值為
A.B.-3 C.D.-

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)f(x)=在(1,2)處的切線斜率為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知定義在上的函數(shù)滿足,且的導(dǎo)函數(shù)則不等式的解集為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若曲線的某一切線與直線平行,則切點(diǎn)坐標(biāo)
            ,切線方程為            .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)滿足,則的單調(diào)遞增區(qū)間是_______;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知雙曲線,則一條漸近線與實(shí)軸所構(gòu)成的角的取值范圍是            .

查看答案和解析>>

同步練習(xí)冊(cè)答案