7.某同學(xué)先后投擲一枚骰子兩次,所得的點(diǎn)數(shù)分別記為x,y,則點(diǎn)(x,y)落在函數(shù)y=2x的圖象上的概率為$\frac{1}{12}$.

分析 先求出基本事件總數(shù)n=6×6=36,再利用列舉法求出點(diǎn)(x,y)落在函數(shù)y=2x的圖象上包含的基本事件個(gè)數(shù),由此能求出點(diǎn)(x,y)落在函數(shù)y=2x的圖象上的概率.

解答 解:某同學(xué)先后投擲一枚骰子兩次,所得的點(diǎn)數(shù)分別記為x,y,
基本事件總數(shù)n=6×6=36,
點(diǎn)(x,y)落在函數(shù)y=2x的圖象上包含的基本事件有:
(1,2),(2,4),(3,6),共3種,
∴點(diǎn)(x,y)落在函數(shù)y=2x的圖象上的概率為p=$\frac{3}{36}=\frac{1}{12}$.
故答案為:$\frac{1}{12}$.

點(diǎn)評 本題考查概率的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意列舉法的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在△ABC中,|$\overrightarrow{AC}$|=1,|$\overrightarrow{CA}$-$\overrightarrow{CB}$|=|$\overrightarrow{CA}$+$\overrightarrow{CB}$|,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.1B.-1C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知向量$\overrightarrow a,\overrightarrow b$滿足$|{\overrightarrow a}|=2,|{\overrightarrow b}|=3,\overrightarrow a•({\overrightarrow b-\overrightarrow a})=1$,則$|{\overrightarrow a-\overrightarrow b}|$=(  )
A.$\sqrt{3}$B.$2\sqrt{2}$C.$\sqrt{7}$D.$\sqrt{23}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)函數(shù)f(x)=ex-ax-1,對?x∈R,f(x)≥0恒成立.
(1)求a的取值集合;
(2)求證:1+$\frac{1}{2}+\frac{1}{3}+…+\frac{1}{n}>ln({n+1})({n∈{N^*}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.有50件產(chǎn)品,編號從1至50,現(xiàn)從中抽5件檢驗(yàn),用系統(tǒng)抽樣的方法確定所抽的編號可能是( 。
A.6,11,16,21,26B.3,13,23,33,43C.5,15,25,36,47D.10,20,29,39,49

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.“經(jīng)過兩條相交直線有且只有一個(gè)平面”是( 。
A.全稱命題B.特稱命題C.p∨q的形式D.p∧q的形式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知向量$\overrightarrow{a}$=(-1,2),又點(diǎn)A(8,0),B(n,t),C(ksinθ,t),θ∈R.
(1)若$\overrightarrow{AB}$⊥$\overrightarrow{a}$,且$|\overrightarrow{AB}|=\sqrt{5}|\overrightarrow{OA}|$,求向量$\overrightarrow{OB}$;
(2)若向量$\overrightarrow{AC}$與向量$\overrightarrow{a}$共線,常數(shù)k>0,求f(θ)=tsinθ的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在區(qū)間[0,2]上隨機(jī)地取一個(gè)數(shù)x,則事件“-1≤log ${\;}_{\frac{1}{2}}$(x+$\frac{1}{2}$)≤1”發(fā)生的概率(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知直線3x+4y+2=0與圓x2+y2-2tx=0相切,則t=1或$-\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊答案