函數(shù)f(x)=
x-1
+(x-2)0的定義域?yàn)椋ā 。?/div>
A、{x|x≠2}
B、[1,2)∪(2,+∞)
C、{x|x>1}
D、[1,+∞)
考點(diǎn):函數(shù)的定義域及其求法
專(zhuān)題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)成立的條件即可得到結(jié)論.
解答: 解:要使函數(shù)f(x)有意義,則
x-1≥0
x-2≠0
,
x≥1
x≠2
,
解得x≥1且x≠2,
故選:B
點(diǎn)評(píng):本題主要考查函數(shù)的定義域的求解,根據(jù)函數(shù)成立的條件是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)若函數(shù)f(x)=|2x+a|的單調(diào)遞增區(qū)間是[3,+∞),則實(shí)數(shù)a=
 
;
(2)若函數(shù)f(x)=|2x+a|在區(qū)間[3,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(文)已知函數(shù)f(x)=x3-(2a+2)x2+bx+c,設(shè)曲線(xiàn)y=f(x)在與x軸交點(diǎn)處的切線(xiàn)為y=x-1,f′(x)為f(x)的導(dǎo)函數(shù),函數(shù)h(x)=f(x)-x+2a+1.
(1)若函數(shù)f(x)滿(mǎn)足f'(4-x)=f'(x),求實(shí)數(shù)a,b,c的值;
(2)若函數(shù)h(x)在區(qū)間(-1,1)單調(diào)遞減,求實(shí)數(shù)a的取值范圍;
(3)當(dāng)a<
1
2
時(shí),函數(shù)h(x)在區(qū)間(a-1,3-a2)上有最小值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合M={-1,1},N={-1,0,2},則M∩N為( 。
A、{-1,1}B、{-1}
C、{0}D、{-1,0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

f(x)是偶函數(shù),且f(x)在[0,+∞)上是增函數(shù),不等式f(ax2+x+1)≤f(1)對(duì)x∈[
1
2
,1]恒成立,則實(shí)數(shù)a的取值范圍是( 。
A、[-2,1]
B、[-3,0]
C、[-2,-1]
D、[-3,-2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線(xiàn)2x+3y+1=0與直線(xiàn)4x+my+7=0平行,則它們之間的距離為( 。
A、4
B、
2
13
13
C、
5
26
13
D、
7
20
10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=-x2+2 (a-1)x+2在區(qū)間(-∞,4)上遞增,則a的取值范圍是( 。
A、[-3,+∞)
B、(-∞,-3]
C、(-∞,5]
D、[5,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=2,2an+1-2an=1,則a101的值為( 。
A、49B、50C、51D、52

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=
2-x2
,B={y|y=x2},則A∩B=( 。
A、{(-1,1),(1,1)}
B、(-1,1)
C、[0,
2
]
D、[-
2
,
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案