2.在直角坐標(biāo)系xOy中,以O(shè)為極點,x軸正半軸為極軸建立極坐標(biāo)系,圓C1,直線C2的極坐標(biāo)方程分別為ρ=4sinθ,ρcos(θ-$\frac{π}{4}$)=2$\sqrt{2}$.求C1與C2交點的極坐標(biāo);(ρ<0,0≤θ<2π)

分析 先將圓C1,直線C2化成直角坐標(biāo)方程,再聯(lián)立方程組解出它們交點的直角坐標(biāo),最后化成極坐標(biāo)即可.

解答 解:圓C1的直角坐標(biāo)方程為x2+(y-2)2=4 直線C2的直角坐標(biāo)方程為x+y-4=0.…(4分)
解$\left\{\begin{array}{l}{{x}^{2}+(y-2)^{2}=4}\\{x+y-4=0}\end{array}\right.$
得$\left\{\begin{array}{l}{x=0}\\{y=4}\end{array}\right.$或$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$ …(8分)
所以C1與C2交點的極坐標(biāo)為$({-4,\frac{3π}{2}})$,$({-2\sqrt{2},\frac{5π}{4}})$…(12分).

點評 本題主要考查把極坐標(biāo)方程化為直角坐標(biāo)方程,考查方程思想的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=e2(lnx+a-1)(e=2.71828…為自然對數(shù)的底數(shù)在定義域上單調(diào)遞增.
(1)求實數(shù)a的取值范圍;
(2)當(dāng)實數(shù)a取最小值時,設(shè)$g(x)={e^{-x}}[f(x)-1]+\frac{2}{ex}$,證明:
①$g(x)≥min\{y|y=g(x),x∈[\frac{1}{2},\frac{4}{7}]\}$;
②$g(x)+1>\frac{3}{56}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知復(fù)數(shù)z=2+i,則z4-4z3+6z2-4z-1=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若直線l1:ax+2y+a+3=0與l2::x+(a+1)y+4=0平行,則實數(shù)a的值為( 。
A.1B.-2C.1或-2D.-1或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.求經(jīng)過點M(2、-2)以及圓x2+y2-6x=0與x2+y2=4交點的圓的方程x2+y2-3x-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求函數(shù)y=2lnx•x2的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.設(shè)(2-x)5=a0+a1x+…+a5x5,那么a0的值為( 。
A.1B.16C.32D.-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,若x1,x2∈(-$\frac{π}{6}$,$\frac{π}{3}$),且f(x1)=f(x2),則f(x1+x2)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知{an},{bn}均為等差數(shù)列,其前n項和分別為Sn,Tn,且$\frac{{S}_{n}}{{T}_{n}}$=$\frac{2n+2}{n+3}$,則$\frac{{a}_{5}}{_{5}}$=$\frac{5}{3}$.

查看答案和解析>>

同步練習(xí)冊答案