考點(diǎn):利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值,函數(shù)的零點(diǎn)
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)m=1-
時(shí),求得導(dǎo)數(shù)T'(x),分n≥0,n<-2,-2≤n<0三種情況進(jìn)行討論,可求得函數(shù)最大值;
(2)n=4時(shí),方程f(x)=g(x)即為e
x=2x+m,構(gòu)造函數(shù)h(x)=e
x-2x,x∈[0,2],則問(wèn)題轉(zhuǎn)化為h(x)與y=m圖象的交點(diǎn)問(wèn)題,借助導(dǎo)數(shù)可求函數(shù)最值、單調(diào)性,借助圖象可得m范圍;
(3)問(wèn)題即為f(x)>g(x)恒成立,構(gòu)造函數(shù)h(x)=
ex-x+,由導(dǎo)數(shù)可求得h(x)的最小值h(x)
min=h(ln
)=
-
ln+
,則
-
ln+
>0,令t(x)=x-xlnx+
(x>0),用導(dǎo)數(shù)可研究t(x)的單調(diào)性,根據(jù)單調(diào)性及e
2范圍可求得n的最大值;
解答:
解:(1)當(dāng)m=1-
時(shí),T(x)=f(x)g(x)=
ex(x+m)=
ex(x+1-),
T'(x)=
ex(x+1-)+
•ex=
(x+1)•ex,
①當(dāng)n≥0時(shí),x∈[0,1]時(shí),T'(x)>0,T(x)在[0,1]上單調(diào)遞增,T(x)
max=T(1)=e;
②當(dāng)0<-
<1,即n<-2時(shí),x∈[0,-
)時(shí),T'(x)>0,T(x)遞增;x∈(-
,1]時(shí),T'(x)<0,T(x)遞減;
∴x=-
時(shí)T(x)取得極大值,也為最大值,T(x)
max=T(-
)=-
•e-;
③當(dāng)-
≥1,即-2≤n<0時(shí),x∈[0,1]時(shí),T'(x)≥0,T(x)遞增,
∴T(x)
max=T(1)=e;
綜上,當(dāng)n≥-2時(shí),T(x)
max=e;當(dāng)n<-2時(shí),T(x)
max=-
•e-;
(2)n=4時(shí),方程f(x)=g(x)即為e
x=2x+m,
令h(x)=e
x-2x,x∈[0,2],則h'(x)=e
x-2,
當(dāng)x∈[0,ln2)時(shí),h'(x)<0,h(x)遞減;當(dāng)x∈(ln2,2]時(shí),h'(x)>0,h(x)遞增;
∴x=ln2時(shí),h(x)取得極小值,也為最小值,h(x)
min=h(ln2)=2-2ln2;
又h(0)=1,h(2)=e
2-4>1,∴h(x)
max=e
2-4;
∵f(x)=g(x)在[0,2]上恰有兩個(gè)相等實(shí)根,
∴m=2-2ln2或1<m≤e
2-4.
(3)m=-
時(shí),f(x)的圖象恒在g(x)圖象上方,即f(x)>g(x)恒成立,即
ex>x-恒成立,
令h(x)=
ex-x+,則h'(x)=
ex-,令h'(x)=0,得x=ln
,
當(dāng)x<ln
時(shí),h'(x)<0,h(x)遞減,當(dāng)x>ln
時(shí),h'(x)>0,h(x)遞增,
∴x=ln
時(shí),h(x)取得極小值,也為最小值,h(x)
min=h(ln
)=
-
ln+
,
∵f(x)>g(x)恒成立,∴
-
ln+
>0,
令t(x)=x-xlnx+
(x>0),則t'(x)=-lnx,
當(dāng)0<x<1時(shí),t'(x)>0,t(x)遞增;當(dāng)x>1時(shí),t'(x)<0,t(x)遞減;
當(dāng)n=2e
2時(shí),t(e
2)=
e2-e2lne2+=-
e2+,
又7<
e2<,∴t(e
2)>0,由x>1時(shí)t(x)遞減知t(14)>0,即n=14時(shí),
-
ln+
>0;
而
-ln+=
-ln<
-lne2=0,即n=15時(shí),
-
ln+
<0,
∴滿足條件的最大正整數(shù)n=14.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)研究函數(shù)的最值、單調(diào)性及恒成立問(wèn)題,考查分類討論思想,考查學(xué)生綜合運(yùn)用知識(shí)分析問(wèn)題解決問(wèn)題的能力,綜合性強(qiáng),難度大,能力要求高.