已知函數(shù)f(x)=loga(x2-ax+5)(a>0,且a≠1),
(1)當a=2時,求f(x)的最小值;
(2)若函數(shù)f(x)對任意x∈(0,+∞)有意義,求實數(shù)a的取值范圍.
考點:對數(shù)函數(shù)圖象與性質(zhì)的綜合應用
專題:函數(shù)的性質(zhì)及應用
分析:(1)當a=2時,根據(jù)函數(shù)f(x)=log2[(x-1)2+4],可得當x=1時,函數(shù)f(x)取得最小值.
(2)根據(jù)題意以及函數(shù)y=x2-ax+5的對稱軸為x=
a
2
,可得 (
a
2
)
2
-a•
a
2
+5>0,再結合a>0,且a≠1,解得實數(shù)a的取值范圍.
解答: 解:(1)當a=2時,∵函數(shù)f(x)=loga(x2-ax+5)=log2(x2-2x+5)=log2[(x-1)2+4],
∴當x=1時,函數(shù)f(x)取得最小值為log24=2.
(2)∵函數(shù)f(x)=loga(x2-ax+5)在(0,+∞)有意義,函數(shù)y=x2-ax+5的對稱軸為x=
a
2
,
(
a
2
)
2
-a•
a
2
+5>0,再結合a>0,且a≠1,解得 0<a<1,或 1<a<2
5
,
即實數(shù)a的取值范圍為(0,1)∪(1,2
5
).
點評:本題主要考查對數(shù)函數(shù)的圖象和性質(zhì)綜合應用,二次函數(shù)的性質(zhì),體現(xiàn)了轉化的數(shù)學思想,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若變量x,y滿足約束條件
x+3y-3≥0
5x-3y-5≤0
x-y+1≥0
,則z=x+y的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知i為虛數(shù)單位,若復數(shù)
1+i
1-i
=a+bi(a,b∈R),則a+b=(  )
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,已知a1=2,S6=22.
(1)求Sn
(2)若從{an}中抽取一個公比為q的等比數(shù)列{akn},其中k1=1,且k1<k2<…<kn<…,kn∈N*
①當q取最小值時,求{kn}的通項公式;
②若關于n(n∈N*)的不等式6Sn>kn+1有解,試求q的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
經(jīng)過點P(1,
2
2
)
,且兩焦點與短軸的兩個端點的連線構成一正方形.
(1)求橢圓C的方程;
(2)直線l與橢圓C交于A,B兩點,若線段AB的垂直平分線經(jīng)過點(0,-
1
2
)
,求△AOB(O為原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=ex(其中e為自然對數(shù)的底數(shù)),g(x)=
n
2
x+m(m,n∈R)且7<e2
15
2

(1)若T(x)=f(x)g(x),m=1-
n
2
,求T(x)在[0,1]上最大值;
(2)若n=4時,方程f(x)=g(x)在[0,2]上恰有兩個相等實根,求m的范圍;
(3)若m=-
15
2
,n∈N*
,求使f(x)圖象恒在g(x)圖象上方的最大正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知奇函數(shù)f(x)的定義域為[-4,4],且當x∈[0,4]時,f(x)的函數(shù)圖象如圖所示,解不等式:
(1)
f(x)
x
<0;
(2)
f(x)
x
≥0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)=
a•4x-1
4x+1
是奇函數(shù),求f(x)值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的體積為
 

查看答案和解析>>

同步練習冊答案