【題目】如圖:在四棱錐P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=2,PA=3,PA⊥底面ABCD,E是PC中點,F是AB中點.
(Ⅰ)求證:BE∥平面PDF;
(Ⅱ)求直線PD與平面PFB所成角的正切值;
(Ⅲ)求三棱錐P﹣DEF的體積.
【答案】(Ⅰ)見解析;(Ⅱ) ;(Ⅲ).
【解析】試題解析:(Ⅰ)利用三角形的中位線定理、平行四邊形的判定與性質(zhì)定理及線面平行的判定定理即可證明取的中點為,連接,則可證四邊形是平行四邊形,得出,從而證明結(jié)論;(Ⅱ)先證⊥, ⊥,利用線面垂直的性質(zhì)定理可證明⊥平面可得∠為直線與平面所成角,利用直角三角形選擇求求其正切值,即可得結(jié)果;(Ⅲ)利用等積變形和三棱錐的體積計算公式可得==.
(Ⅰ)證明:取中點,連,;
因為,分別為, 中點,所以, ∥;
且是中點, , ∥;
且∥,
則四邊形為平行四邊形
所以∥,且 平面; 平面;
(Ⅱ)解:因為⊥底面, 底面,所以⊥;
又因為底面是菱形, =2, =1,∠=,則,
+ = , ⊥,
且, 所以⊥平面,
則是在平面內(nèi)的射影,
∠為直線與平面所成角,
==
(Ⅲ)解:因為是中點,點到平面的距離等于點到平面的距離,
==.
【方法點晴】本題主要考查線面平行的判定定理、直線和平面成的角的定義及求法、利用等積變換求三棱錐體積,屬于難題.證明線面平行的常用方法:①利用線面平行的判定定理,使用這個定理的關鍵是設法在平面內(nèi)找到一條與已知直線平行的直線,可利用幾何體的特征,合理利用中位線定理、線面平行的性質(zhì)或者構造平行四邊形、尋找比例式證明兩直線平行.②利用面面平行的性質(zhì),即兩平面平行,在其中一平面內(nèi)的直線平行于另一平面. 本題(1)是就是利用方法①證明的.
科目:高中數(shù)學 來源: 題型:
【題目】某研究所計劃利用“神七”宇宙飛船進行新產(chǎn)品搭載實驗,計劃搭載新產(chǎn)品、,該所要根據(jù)該產(chǎn)品的研制成本、產(chǎn)品重量、搭載實驗費用、和預計產(chǎn)生收益來決定具體安排.通過調(diào)查,有關數(shù)據(jù)如下表:
產(chǎn)品A(件) | 產(chǎn)品B(件) | ||
研制成本、搭載費用之和(萬元) | 20 | 30 | 計劃最大資金額300萬元 |
產(chǎn)品重量(千克) | 10 | 5 | 最大搭載重量110千克 |
預計收益(萬元) | 80 | 60 |
如何安排這兩種產(chǎn)品的件數(shù)進行搭載,才能使總預計收益達到最大,最大收益是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,已知中心在原點,焦點在x軸上的雙曲線C的離心率為,且雙曲線C與斜率為2的直線l相交,且其中一個交點為P(﹣3,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標軸的交點為焦點的拋物線的標準方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種商品在30天內(nèi)每件的銷售價格P(元)與時間t(天)的函數(shù)關系用下圖的兩條線段表示;該商品在30天內(nèi)日銷售量Q(件)與時間t(天)之間的關系Q=﹣t+40.
(1)根據(jù)提供的圖象,寫出該商品每件的銷售價格P與時間t的函數(shù)關系式;
(2)問這30天內(nèi),哪天的銷售額最大,最大是多少?(銷售額=銷售價格×銷售量)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】血藥濃度(Plasma Concentration)是指藥物吸收后在血漿內(nèi)的總濃度. 藥物在人體內(nèi)發(fā)揮治療作用時,該藥物的血藥濃度應介于最低有效濃度和最低中毒濃度之間.已知成人單次服用1單位某藥物后,體內(nèi)血藥濃度及相關信息如圖所示:
根據(jù)圖中提供的信息,下列關于成人使用該藥物的說法中,不正確的個數(shù)是
①首次服用該藥物1單位約10分鐘后,藥物發(fā)揮治療作用
②每次服用該藥物1單位,兩次服藥間隔小于2小時,一定會產(chǎn)生藥物中毒
③每間隔5.5小時服用該藥物1單位,可使藥物持續(xù)發(fā)揮治療作用
④首次服用該藥物1單位3小時后,再次服用該藥物1單位,不會發(fā)生藥物中毒
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若一系列函數(shù)的解析式和值域相同,但是定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2 , x∈[1,2],與函數(shù)y=x2 , x∈[﹣2,﹣1]即為“同族函數(shù)”.下面的函數(shù)解析式也能夠被用來構造“同族函數(shù)”的是( )
A.y=x
B.y=|x﹣3|
C.y=2x
D.y=log
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,橢圓的離心率為,以橢圓的上頂點為圓心作圓,
,圓與橢圓在第一象限交于點,在第二象限交于點.
(1)求橢圓的方程;
(2)求的最小值,并求出此時圓的方程;
(3)設點是橢圓上異于的一點,且直線分別與軸交于點為坐標原點,求證:
為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com