【題目】已知a為正實數(shù),n為自然數(shù),拋物線 與x軸正半軸相交于點A,設(shè)f(n)為該拋物線在點A處的切線在y軸上的截距.
(1)用a和n表示f(n);
(2)求對所有n都有 成立的a的最小值;
(3)當(dāng)0<a<1時,比較 的大小,并說明理由.

【答案】
(1)解:∵拋物線 與x軸正半軸相交于點A,∴A(

求導(dǎo)得y′=﹣2x

∴拋物線在點A處的切線方程為 ,∴

∵f(n)為該拋物線在點A處的切線在y軸上的截距,∴f(n)=an;


(2)解:由(1)知f(n)=an,則 成立的充要條件是an≥2n3+1

即知,an≥2n3+1對所有n成立,特別的,取n=2得到a≥

當(dāng)a= ,n≥3時,an>4n=(1+3)n≥1+ =1+2n3+ >2n3+1

當(dāng)n=0,1,2時,

∴a= 時,對所有n都有 成立

∴a的最小值為


(3)解:由(1)知f(k)=ak,下面證明:

首先證明:當(dāng)0<x<1時,

設(shè)函數(shù)g(x)= x(x2﹣x)+1,0<x<1,則g′(x)= x(x﹣

當(dāng)0<x< 時,g′(x)<0;當(dāng) 時,g′(x)>0

故函數(shù)g(x)在區(qū)間(0,1)上的最小值g(x)min=g( )=0

∴當(dāng)0<x<1時,g(x)≥0,∴

由0<a<1知0<ak<1,因此 ,

從而 = = =


【解析】(1)根據(jù)拋物線 與x軸正半軸相交于點A,可得A( ),進(jìn)一步可求拋物線在點A處的切線方程,從而可得f(n);(2)由(1)知f(n)=an , 則 成立的充要條件是an≥2n3+1,即知,an≥2n3+1對所有n成立,當(dāng)a= ,n≥3時,an>4n=(1+3)n>2n3+1,當(dāng)n=0,1,2時, ,由此可得a的最小值;(3)由(1)知f(k)=ak , 證明當(dāng)0<x<1時, ,即可證明:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,其焦距為,若,則稱橢圓為“黃金橢圓”.黃金橢圓有如下性質(zhì):“黃金橢圓”的左、右焦點分別是,以,,為頂點的菱形的內(nèi)切圓過焦點.

(1)類比“黃金橢圓”的定義,試寫出“黃金雙曲線”的定義;

(2)類比“黃金橢圓”的性質(zhì),試寫出“黃金雙曲線”的性質(zhì),并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下表中的數(shù)據(jù)是一次階段性考試某班的數(shù)學(xué)、物理原始成績:

用這44人的兩科成績制作如下散點圖:

學(xué)號為22號的同學(xué)由于嚴(yán)重感冒導(dǎo)致物理考試發(fā)揮失常,學(xué)號為31號的同學(xué)因故未能參加物理學(xué)科的考試,為了使分析結(jié)果更客觀準(zhǔn)確,老師將兩同學(xué)的成績(對應(yīng)于圖中兩點)剔除后,用剩下的42個同學(xué)的數(shù)據(jù)作分析,計算得到下列統(tǒng)計指標(biāo):

數(shù)學(xué)學(xué)科平均分為110.5,標(biāo)準(zhǔn)差為18.36,物理學(xué)科的平均分為74,標(biāo)準(zhǔn)差為11.18,數(shù)學(xué)成績

與物理成績的相關(guān)系數(shù)為,回歸直線(如圖所示)的方程為.

(1)若不剔除兩同學(xué)的數(shù)據(jù),用全部44人的成績作回歸分析,設(shè)數(shù)學(xué)成績與物理成績的相關(guān)系數(shù)為,回歸直線為,試分析的大小關(guān)系,并在圖中畫出回歸直線的大致位置;

(2)如果同學(xué)參加了這次物理考試,估計同學(xué)的物理分?jǐn)?shù)(精確到個位);

(3)就這次考試而言,學(xué)號為16號的同學(xué)數(shù)學(xué)與物理哪個學(xué)科成績要好一些?(通常為了比較某個學(xué)生不同學(xué)科的成績水平,可按公式統(tǒng)一化成標(biāo)準(zhǔn)分再進(jìn)行比較,其中為學(xué)科原始分,為學(xué)科平均分,為學(xué)科標(biāo)準(zhǔn)差)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)f(x)=6cos2 sinωx﹣3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形.

(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)= ,且x0∈(﹣ ),求f(x0+1)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且a2an=S2+Sn對一切正整數(shù)n都成立.
(1)求a1 , a2的值;
(2)設(shè)a1>0,數(shù)列{lg }的前n項和為Tn , 當(dāng)n為何值時,Tn最大?并求出Tn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定義域為的函數(shù)上有最大值1,設(shè)

(1)求的值;

(2)若不等式上恒成立,求實數(shù)的取值范圍;

(3)若函數(shù)有三個不同的零點,求實數(shù)的取值范圍(為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于數(shù)集X={﹣1,x1 , x2 , …,xn},其中0<x1<x2<…<xn , n≥2,定義向量集Y={ =(s,t),s∈X,t∈X},若對任意 ,存在 ,使得 ,則稱X具有性質(zhì)P.例如{﹣1,1,2}具有性質(zhì)P.
(1)若x>2,且{﹣1,1,2,x}具有性質(zhì)P,求x的值;
(2)若X具有性質(zhì)P,求證:1∈X,且當(dāng)xn>1時,x1=1;
(3)若X具有性質(zhì)P,且x1=1、x2=q(q為常數(shù)),求有窮數(shù)列x1 , x2 , …,xn的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(考生注意:請在下列三題中任選一題作答,如果多做,則按所做的第一題評分)
A.(不等式選做題)若存在實數(shù)x使|x﹣a|+|x﹣1|≤3成立,則實數(shù)a的取值范圍是
B.(幾何證明選做題)如圖,在圓O中,直徑AB與弦CD垂直,垂足為E,EF⊥DB,垂足為F,若AB=6,AE=1,則DFDB=

C.(坐標(biāo)系與參數(shù)方程)直線2ρcosθ=1與圓ρ=2cosθ相交的弦長為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,角AB,C所對的邊分別為a,b,c,設(shè)S為△ABC的面積,滿足Sa2+c2b2).

1)求角B的大。

2)若邊b,求a+c的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案