有下列四個命題:
①“若xy=1,則x、y互為倒數(shù)”的逆命題;
②“相似三角形的周長相等”的否命題;
③若“A∪B=B,則A?B”的逆否命題.
其中的真命題有(  )個.
A、0B、1C、2D、3
考點:命題的真假判斷與應用
專題:簡易邏輯
分析:①寫出“若xy=1,則x、y互為倒數(shù)”的逆命題,再判斷即可;
②寫出“相似三角形的周長相等”的否命題,判斷即可;
③先判斷若“A∪B=B,則A?B”的真假,利用原命題與其逆否命題同真同假的性質即可判斷.
解答: 解:①“若xy=1,則x、y互為倒數(shù)”的逆命題為“若x、y互為倒數(shù),則xy=1”,正確;
②“相似三角形的周長相等”的否命題為“不相似三角形的周長不等”,顯然錯誤;
③∵A∪B=B,∴A⊆B,
∴“A∪B=B,則A?B”錯誤,由原命題與其逆否命題同真同假,
∴其逆否命題錯誤.
故選:B.
點評:本題考查命題的真假判斷與應用,著重考查四種命題之間的關系及真假判斷,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①函數(shù)y=sin(2x-
π
3
)的圖象可由函數(shù)y=sin 2x的圖象向右平移
π
3
個單位得到;
②函數(shù)y=lg x-sin 2x的零點個數(shù)為5;
③在銳角△ABC中,sin A+sin B+sin C>cos A+cos B+cos C;
④“等比數(shù)列{an}是遞增數(shù)列”的一個充分不必要條件是“公比q>1”
其中所有正確命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準?用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖,
(Ⅰ)由于某種原因頻率分布直方圖部分數(shù)據丟失,請在圖中將其補充完整;
(Ⅱ)用樣本估計總體,如果希望80%的居民每月的用水量不超出標準&則月均用水量的最低標準定為多少噸,并說明理由;
(Ⅲ)若將頻率視為概率,現(xiàn)從該市某大型生活社區(qū)隨機調查3位居民的月均用水量(看作有放回的抽樣),其中月均用水量不超過(Ⅱ)中最低標準的人數(shù)為x,求x的分布列和均值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1
2
x2+lnx,?x0∈[1,e],使不等式f(x)≤m,則實數(shù)m的取值范圍( 。
A、m≥1+
1
2
e2
B、m
1
2
C、m≥1
D、m≥1+e

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

焦點在x軸上的雙曲線,它的兩條漸近線的夾角為
π
3
,焦距為6,求此雙曲線方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義在R上的奇函數(shù)f(x),當x>0時,f(x)的表達式是指數(shù)函數(shù),且f(2)=
1
4

(1)當x>0時,求f(x)的表達式;
(2)當x≤0時,求f(x)的表達式;
(3)畫y=f(x),x∈[-4,0]的圖象,并指出函數(shù)的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

方程x2+y2+2x+2y-m=0,表示一個圓,則m的取值范圍( 。
A、m≥-2B、m≤-2
C、m<-2D、m>-2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2+2014,則不等式f(2015)<f(a)的解集是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=log3(1-x)+
1
x-1
的單調遞減區(qū)間是
 

查看答案和解析>>

同步練習冊答案