【題目】已知四棱錐P-ABCD中,底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,E,F(xiàn)分別是PB,PD的中點(diǎn).

(I)求證:PB∥平面FAC;

(II)求三棱錐P-EAD的體積;

(III)求證:平面EAD⊥平面FAC.

【答案】(1)見(jiàn)解析(2)(3)見(jiàn)解析

【解析】分析:(1)連接BD,與AC交于點(diǎn)O,連接OF,推導(dǎo)出OF∥PB,由此能證明PB//平面FAC;

(2)由PA⊥平面ABCD,為棱錐的高,由,由此能求出結(jié)果;

(3)推導(dǎo)出,從而平面,進(jìn)而平面,由此能證明平面平面.

詳解:(I)連接BD,與AC交于點(diǎn)O,連接OF,

在△PBD中,O,F(xiàn)分別是BD,PD中點(diǎn),

所以OF∥PB,

又因?yàn)?/span>OF平面FAC, PB平面FAC,

所以PB//平面FAC,

(II)法1:因?yàn)?/span>PA⊥平面ABCD,AB,AD平面ABCD,

所以PA⊥AB,PA⊥AD,

又因?yàn)?/span>AB⊥AD,,PA,AB平面PAB,

所以AD⊥平面PAB,

在直角△PAB中,PA=AB=2,EPB中點(diǎn),

所以,

所以三棱錐P-EAD的體積為

2:因?yàn)?/span>PA⊥平面ABCD,所以PA為棱錐P-ABD的高.

因?yàn)?/span>PA=AB=2,底面ABCD是正方形,

所以,

因?yàn)?/span>EPB中點(diǎn),所以,

所以

(III)證明:

因?yàn)?/span>AD⊥平面PAB,PB平面PAB,

所以AD⊥PB,

在等腰直角△PAB中,AE⊥PB,

,AE,AD平面EAD,

所以PB⊥平面EAD,

OF∥PB,

所以OF⊥平面EAD,

OF平面FAC,

所以平面EAD⊥平面FAC.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣1|,當(dāng)a<b<c時(shí),f(a)>f(c)>f(b),那么正確的結(jié)論是( 。
A.2a>2b
B.2a>2c
C.2﹣a<2c
D.2a+2c<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx)=-sin2x+mcosx-1,x∈[].

(1)若fx)的最小值為-4,求m的值;

(2)當(dāng)m=2時(shí),若對(duì)任意x1,x2∈[-]都有|fx1)-fx2)|恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,直線與拋物線相交于不同的兩點(diǎn).

(1)如果直線過(guò)拋物線的焦點(diǎn),求的值;

(2)如果 ,證明:直線必過(guò)一定點(diǎn),并求出該定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,為其左、右頂點(diǎn),為橢圓上除,外任意一點(diǎn),若記直線,斜率分別為,.

(1)求證:為定值;

(2)若橢圓的長(zhǎng)軸長(zhǎng)為4,過(guò)點(diǎn)作兩條互相垂直的直線,,若恰好為與橢圓相交的弦的中點(diǎn),求與橢圓相交的弦的中點(diǎn)的橫坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(I)求函數(shù)在點(diǎn)(1,0)處的切線方程;

(II)設(shè)實(shí)數(shù)k使得f(x)< kx恒成立,求k的范圍;

(III)設(shè)函數(shù),求函數(shù)h(x)在區(qū)間上的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知定義域在R上的函數(shù)f(x)=|x+1|+|x﹣2|的最小值為a.
(1)求a的值;
(2)若p,q,r為正實(shí)數(shù),且p+q+r=a,求證:p2+q2+r2≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠生產(chǎn)產(chǎn)品件的總成本(萬(wàn)元).已知產(chǎn)品單價(jià)(萬(wàn)元)與產(chǎn)品件數(shù)滿足,生產(chǎn)100件這樣的產(chǎn)品單價(jià)為50萬(wàn)元.

(1)設(shè)產(chǎn)量為件時(shí),總利潤(rùn)為(萬(wàn)元),求的解析式;

(2)產(chǎn)量定為多少時(shí)總利潤(rùn)(萬(wàn)元)最大?并求最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】函數(shù)f(x)= 的定義域?yàn)椋?/span>
A.(0,
B.(2,+∞)
C.(0, )∪(2,+∞)
D.(0, ]∪[2,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案