14.復(fù)數(shù)z滿足zi-1=i,則$\overline z$為(  )
A.1-iB.1+iC.-1+iD.-1-i

分析 由zi-1=i,得$z=\frac{1+i}{i}$,然后利用復(fù)數(shù)代數(shù)形式的乘除運算化簡復(fù)數(shù)z,則$\overline z$可求.

解答 解:由zi-1=i,
得$z=\frac{1+i}{i}$=$\frac{-i(1+i)}{-{i}^{2}}=1-i$,
則$\overline z$為:1+i.
故選:B.

點評 本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了共軛復(fù)數(shù)的求法,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是菱形,∠BAD=120°,對角線AC與BD交于點O,M為OC中點.
(Ⅰ)求證:BD⊥PM
(Ⅱ)若二面角O-PM-D的正切值為2$\sqrt{6}$,求$\frac{PA}{AD}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知θ是第四象限角,且sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,則sinθ=-$\frac{\sqrt{2}}{10}$.tan(θ-$\frac{π}{4}$)=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某制造商3月生產(chǎn)了一批乒乓球,隨機抽取100個進行檢查,測得每個球的直徑(單位:mm),將數(shù)據(jù)進行分組,得到如下頻率分布表:
分組頻數(shù)頻率
[39.95,39.97)100.10
[39.97,39.99)x0.20
[39.99,40.01)500.50
[40.01,40.03]20y
   合計1001
(1)求出頻率分布表中的x,y,并在圖中補全頻率分布直方圖;
(2)若以上述頻率作為概率,已知標(biāo)準(zhǔn)乒乓球的直徑為40.00mm,試求這批乒乓球的直徑誤差不超過0.03mm的概率;
(3)統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點值(例如區(qū)間[39.99,40.01)的中點值是40.00)作為代表.據(jù)此估計這批乒乓球直徑的平均值(結(jié)果保留兩位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.若sinα=2cosα,則sin2α+6cos2α的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知f(x)是定義在[-1,1]上的奇函數(shù),對任意的x1,x2∈[-1,1],均有(x2-x1)(f(x2)-f(x1))≥0.當(dāng)x∈[0,1]時,2f($\frac{x}{5}$)=f(x),f(x)=1-f(1-x),則f(-$\frac{290}{2016}$)+f(-$\frac{291}{2016}$)+…+f(-$\frac{314}{2016}$)+f(-$\frac{315}{2016}$)=( 。
A.-$\frac{11}{2}$B.-6C.-$\frac{13}{2}$D.-$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.某班50位學(xué)生期中考試數(shù)學(xué)成績的頻率直方分布圖如圖所示,其中成績分組區(qū)間是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].
(1)求圖中x的值;
(2)估計這次考試的平均分;
(3)估計這次考試的中位數(shù)(精確到0.1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某農(nóng)科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進行分析研究,他們分別記錄了11月1日至11月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如表資料:
    日期11月1日11月2日11月3日11月4日11月5日
溫差x(℃)    8   11  12   13   10
發(fā)芽數(shù)y(顆)   16   25  26   30   23
設(shè)農(nóng)科所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對被選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是不相鄰2天數(shù)據(jù)的概率;
(2)若選取的是11月1日與11月5日的兩組數(shù)據(jù),請根據(jù)11月2日至11月4日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$;
(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:$\widehat$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n•\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\hat a=\overline y-\hat b\overline x$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)y=cos4x-sin4x+2的最小周期是( 。
A.πB.C.$\frac{π}{2}$D.$\frac{π}{4}$

查看答案和解析>>

同步練習(xí)冊答案