設(shè)函數(shù),則當(dāng)時(shí),的導(dǎo)函數(shù)的極小值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知平面直角坐標(biāo)系xOy中,過點(diǎn)P(-1,-2)的直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1+tcos45°}\\{y=-2+tsin45°}\end{array}\right.$(t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ•sinθ•tanθ=2a(a>0),直線l與曲線C相交于不同的兩點(diǎn)M、N.
(1)求曲線C的直角坐標(biāo)方程和直線l的普通方程;
(2)若|PM|=|MN|,求實(shí)數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知圓C:x2+y2=9,過點(diǎn)P(3,1)作圓C的切線,則切線方程為x=3或4x+3y-15=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.半徑為2的圓C的圓心在第四象限,且與直線x=0和$x+y=2\sqrt{2}$均相切,則該圓的標(biāo)準(zhǔn)方程為( 。
A.(x-1)2+(y+2)2=4B.(x-2)2+(y+2)2=2C.(x-2)2+(y+2)2=4D.(x-2$\sqrt{2}$)2+(y+2$\sqrt{2}$)2=4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.觀察下列三角形數(shù)表:

假設(shè)第n行的第二個(gè)數(shù)為${a_n}({n≥2,n∈{N^*}})$,
(1)歸納出an+1與an的關(guān)系式,并求出an的通項(xiàng)公式;
(2)設(shè)anbn=1(n≥2),求證:b2+b3+…+bn<2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知{an}為等差數(shù)列,公差為d,且0<d<1,a5≠$\frac{kπ}{2}$(k∈Z),sin2a3+2sina5•cosa5=sin2a7,函數(shù)f(x)=dsin(wx+4d)(w>0)滿足:在$x∈(0,\frac{3π}{4})$上單調(diào)且存在${x_0}∈(0,\frac{3π}{4}),f(x)+f(2{x_0}-x)=0$,則w范圍是0<w≤$\frac{4}{3}$..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南長沙長郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題

已知,滿足約束條件恒成立,則實(shí)數(shù)的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效地改良玉米品種,為農(nóng)民提供技術(shù)支援.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.
(1)完成2×2列聯(lián)表,并判斷是否可以在犯錯(cuò)誤概率不超過1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?
(2)(i)按照分層抽樣的方式,在上述樣本中,從易倒伏和抗倒伏兩組中抽出9株玉米,設(shè)取出的易倒伏矮莖玉米株數(shù)為X,求X的分布列(概率用組合數(shù)算式表示)
(ii)若將頻率視為概率,從抗倒伏的玉米試驗(yàn)田中再隨機(jī)取出50株,求取出的高莖玉米株數(shù)的數(shù)學(xué)期望和方差
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
( ${{K}^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)雙曲線$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的焦點(diǎn)分別為F1,F(xiàn)2,A為雙曲線上的一點(diǎn),且F1F2⊥AF2,若直線AF1與圓x2+y2=$\frac{{a}^{2}{+b}^{2}}{9}$相切,在雙曲線的離心率為$\frac{\sqrt{2}+2\sqrt{6}}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案