分析 (1)利用數(shù)列的關(guān)系歸納出an+1與an的關(guān)系式,利用累加法求解即可.
(2)利用放縮法化簡(jiǎn)通項(xiàng)公式,通過(guò)裂項(xiàng)消項(xiàng)法求解即可.
解答 解:(1)依題意an+1=an+n(n≥2),a2=2,
${a_n}={a_2}+({{a_3}-{a_2}})+({{a_4}-{a_3}})+…+({{a_n}-{a_{n-1}}})=2+2+3+…+({n-1})=2+\frac{{({n-2})({n+1})}}{2}$,
所以${a_n}=\frac{1}{2}{n^2}-\frac{1}{2}n+1({n≥2})$;
(2)因?yàn)閍nbn=1,所以${b_n}=\frac{2}{{{n^2}-n+2}}<\frac{2}{{{n^2}-n}}=2({\frac{1}{n-1}-\frac{1}{n}})$,${b_2}+{b_3}+{b_4}+…+{b_n}<2[{({\frac{1}{1}-\frac{1}{2}})+({\frac{1}{2}-\frac{1}{3}})+…+({\frac{1}{n-1}-\frac{1}{n}})}]=2({1-\frac{1}{n}})<2$.
點(diǎn)評(píng) 本題考查數(shù)列的應(yīng)用,放縮法的應(yīng)用,數(shù)列求和以及通項(xiàng)公式的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(sinA)•g(sinB)>f(sinB)•g(sinA) | B. | f(sinA)•g(sinB)<f(sinB)•g(sinA) | ||
C. | f(cosA)•g(sinB)>f(sinB)•g(cosA) | D. | f(cosA)•g(sinB)<f(sinB)•g(cosA) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2017屆湖南長(zhǎng)沙長(zhǎng)郡中學(xué)高三上周測(cè)十二數(shù)學(xué)(理)試卷(解析版) 題型:填空題
設(shè)函數(shù)且,則當(dāng)時(shí),的導(dǎo)函數(shù)的極小值為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 其圖象關(guān)于直線$x=-\frac{π}{4}$對(duì)稱 | |
B. | 其圖象可由$y=2sin(x+\frac{π}{4})+1$圖象上所有點(diǎn)的橫坐標(biāo)變?yōu)樵瓉?lái)的$\frac{1}{3}$倍得到 | |
C. | 其圖象關(guān)于點(diǎn)$(\frac{11π}{12},0)$對(duì)稱 | |
D. | 其值域是[-1,3] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)到其漸近線距離為$\sqrt{3}$ | |
B. | 若命題p:?x∈R,使得sinx+cosx≥2,則¬p:?x∈R,都有sinx+cosx<2 | |
C. | 若p∧q是假命題,則p、q都是假命題 | |
D. | 設(shè)a,b是互不垂直的兩條異面直線,則存在唯一平面α,使得a?α,且b∥α |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com