已知在△ABC中,內(nèi)角A,B,C所對邊的邊長分別是a,b,c,若a,b,c滿足a2+c2-b2=
3
ac.
(1)求角B;   
(2)若b=2,∠A=105°,求c邊長.
考點(diǎn):余弦定理
專題:解三角形
分析:(1)利用余弦定理表示出cosB,把已知等式代入求出cosB的值,即可確定出B的度數(shù);
(2)由A與B的度數(shù)求出C的度數(shù),根據(jù)sinB,sinC,以及b的值,利用正弦定理求出c的值即可.
解答: 解:(1)∵a2+c2-b2=
3
ac,
∴cosB=
a2+c2-b2
2ac
=
3
2

∵B為三角形內(nèi)角,
∴B=30°;
(2)∵∠A=105°,∠B=30°,
∴∠C=45°,
由正弦定理得:
2
sin30°
=
c
sin45°

解得:c=2
2
點(diǎn)評:此題考查了正弦、余弦定理,以及特殊角的三角函數(shù)值,熟練掌握定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>
5
4
,則函數(shù)y=4x+
1
4x-5
取最小值為( 。
A、-3B、2C、5D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=|log2|x-1||-cosπx的所有零點(diǎn)之和為(  )
A、2B、4C、6D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列各角(1)787°,(2)-957°,(3)-289°,(4)1711°,其中在第一象限的是( 。
A、(1)(2)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c分別是△ABC中∠A,∠B,∠C的對邊,且(sinB+sinC+sinA)(sinB+sinC-sinA)=
18
5
sinBsinC,則以下結(jié)論中正確的是(  )
A、cosA=
4
5
B、cosA=-
4
5
C、cosB=
4
5
D、cosB=-
4
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U={2,4,a2-a+1},A={a+4,4},∁UA={7},則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)全集U={0,1,2,3,4,5,6},集合A={3,4,5,6},則∁UA={0,1,2}
 
.(判斷對錯)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={-1,0,1},B={0,1,2},則A∩B( 。
A、{-1,0,1,2}
B、{1,2}
C、{0,1}
D、{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)短軸的兩個頂點(diǎn)與右焦點(diǎn)的連線構(gòu)成等邊三角形,直線3x+4y+6=0與以橢圓C的上頂點(diǎn)為圓心,以橢圓C的長半軸長為半徑的圓相切.
(1)求橢圓C的方程;
(2)橢圓C與x軸負(fù)半軸交于點(diǎn)A,過點(diǎn)A的直線AM、AN分別與橢圓C交于M、N兩點(diǎn),kAM、kAN分別為直線AM、AN的斜率,kAM•kAN=-
3
4
,求證:直線MN過定點(diǎn),并求出該定點(diǎn)坐標(biāo);
(3)在(2)的條件下,求△AMN面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案