設(shè)函數(shù)f(x)=
4x-4,         x≤1
x2-4x+3, x>1
,則函數(shù)g(x)=f(x)+
1
2
 
的零點(diǎn)個(gè)數(shù)為
 
個(gè).
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專題:作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:問(wèn)題等價(jià)于函數(shù)y=f(x)與函數(shù)y=-
1
2
圖象的公共點(diǎn)個(gè)數(shù),作出函數(shù)的圖象可得.
解答: 解:函數(shù)g(x)=f(x)+
1
2
 
的零點(diǎn)個(gè)數(shù)等價(jià)于函數(shù)y=f(x)與函數(shù)y=-
1
2
圖象的公共點(diǎn)個(gè)數(shù),
作出它們的圖象可得公共點(diǎn)個(gè)數(shù)為3,
故答案為:3
點(diǎn)評(píng):本題考查函數(shù)零點(diǎn)的個(gè)數(shù)問(wèn)題,轉(zhuǎn)化為函數(shù)圖象的公共點(diǎn)個(gè)數(shù)是解決問(wèn)題的關(guān)鍵,屬基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知O是銳角△ABC的外心,若
OC
=x
OA
+y
OB
(x,y∈R),則(  )
A、x+y≤-2
B、-2≤x+y<-1
C、x+y<-1
D、-1<x+y<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱柱ABC-A1B1C1的側(cè)棱長(zhǎng)和底面邊長(zhǎng)均為2,A1在底面ABC內(nèi)的射影O為底面△ABC的中心,如圖所示:
(1)連結(jié)BC1,求異面直線AA1與BC1所成角的大;
(2)連結(jié)A1C、A1B,求三棱錐C1-BCA1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

由于霧霾日趨嚴(yán)重,政府號(hào)召市民乘公交出行.但公交車的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客需求.為此,某市公交公司在某站臺(tái)的60名候車乘客中進(jìn)行隨機(jī)抽樣,共抽取10人進(jìn)行調(diào)查反饋,所選乘客情況如下表所示:
組別 候車時(shí)間(單位:min) 人數(shù)
[0,5) 1
[5,10) 5
[10,15) 3
[15,20) 1
(1)估計(jì)這60名乘客中候車時(shí)間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機(jī)取3人,求至少有一人來(lái)自第二組的概率;
(3)現(xiàn)從這10人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)這3個(gè)人共來(lái)自X個(gè)組,求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且a≥b,sinA+
3
cosA=2sinB.
(Ⅰ)求角C的大;
(Ⅱ)若c=
3
,求a+b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直線y=mx與函數(shù)f(x)=
2-(
1
3
)
x
 
,x≤0
1
2
x
2
 
+1,x>0.
的圖象恰好有3個(gè)不同的公共點(diǎn),則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,則(3-4y-cosx)2+(4+3y+sinx)2的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系xOy中,已知圓O:x2+y2=16,點(diǎn)P(1,2),M,N為圓O上不同的兩點(diǎn),且滿足
PM
PN
=0
.若
PQ
=
PM
+
PN
,則|
PQ
|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖已知△OPQ的面積為S,且
OP
PQ
=1.
(1)若S∈(
1
2
,
3
2
),求向量OP與PQ的夾角θ的取值范圍;
(2)設(shè)|
OP
|=m,S=
3
4
m,以O(shè)為中心,P為焦點(diǎn)的橢圓經(jīng)過(guò)點(diǎn)Q,當(dāng)m≥2時(shí),求|
OQ
|的最小值,并求出此時(shí)的橢圓方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案