由于霧霾日趨嚴(yán)重,政府號(hào)召市民乘公交出行.但公交車(chē)的數(shù)量太多會(huì)造成資源的浪費(fèi),太少又難以滿足乘客需求.為此,某市公交公司在某站臺(tái)的60名候車(chē)乘客中進(jìn)行隨機(jī)抽樣,共抽取10人進(jìn)行調(diào)查反饋,所選乘客情況如下表所示:
組別 候車(chē)時(shí)間(單位:min) 人數(shù)
[0,5) 1
[5,10) 5
[10,15) 3
[15,20) 1
(1)估計(jì)這60名乘客中候車(chē)時(shí)間少于10分鐘的人數(shù);
(2)現(xiàn)從這10人中隨機(jī)取3人,求至少有一人來(lái)自第二組的概率;
(3)現(xiàn)從這10人中隨機(jī)抽取3人進(jìn)行問(wèn)卷調(diào)查,設(shè)這3個(gè)人共來(lái)自X個(gè)組,求X的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,古典概型及其概率計(jì)算公式
專題:綜合題,概率與統(tǒng)計(jì)
分析:(1)根據(jù)15名乘客中候車(chē)時(shí)間少于10分鐘頻數(shù)和為6,可估計(jì)這60名乘客中候車(chē)時(shí)間少于10分鐘的人數(shù);
(2)利用對(duì)立事件的概率公式,可求至少有一人來(lái)自第二組的概率;
(3)X的可能值為1,2,3,求出相應(yīng)的概率,即可求出求X的分布列及數(shù)學(xué)期望.
解答: 解:(1)候車(chē)時(shí)間少于10分鐘的人數(shù)為60×(
1
10
+
5
10
)=36
人;     …(3分)
(2)設(shè)“至少有一人來(lái)自第二組為事件A”P(A)=1-
C
3
5
C
3
10
=
11
12
…(7分)
(3)X的可能值為1,2,3
P(X=1)=
C
3
5
+
C
3
3
C
3
10
=
11
120
,
P(X=2)=
(
C
2
5
+
C
2
3
)×2+
C
2
5
C
1
3
+
C
2
3
C
1
5
C
3
10
=
71
120
,
P(X=3)=
C
1
3
C
1
5
×2+
C
1
5
+
C
1
3
C
3
10
=
38
120
…(10分)
所以X的分布列為
X 1 2 3
P
11
120
71
120
38
120
EX=
11+2×71+3×38
120
=
267
120
=
89
40
…(13分)
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是頻率分布直方表,古典概型概率公式,考查隨機(jī)變量的分布列及數(shù)學(xué)期望,正確求概率是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,輸入m=828,n=345,則輸出的實(shí)數(shù)m的值是( 。
A、68B、69
C、138D、139

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(Ⅰ)求f(x)的表達(dá)式;
(Ⅱ)求由曲線y=f(x)、直線x=-1、直線x=0以及直線y=0圍成的曲邊梯形面
(Ⅲ)求由曲線段y=f(x)(0≤x≤1)繞x軸旋轉(zhuǎn)一周所得旋轉(zhuǎn)體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,且a<b<c,
3
a=2bsinA.
(Ⅰ)求角B的大。
(Ⅱ)若a=2,b=
7
,求c邊的長(zhǎng)和△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)生在高考前1個(gè)月買(mǎi)了一本數(shù)學(xué)《高考沖刺壓軸卷》,每套試卷中有10道選擇題,每道選擇題有4個(gè)選項(xiàng),其中有且僅有一個(gè)選項(xiàng)正確.評(píng)分標(biāo)準(zhǔn)是“每題僅選一個(gè)選項(xiàng),選對(duì)得5分,不選或選錯(cuò)得零分”.假設(shè)該生在壓軸卷(一)的選擇題中確定能做對(duì)前6題,第7-9題每題只能排除兩個(gè)選項(xiàng)是錯(cuò)誤的,第10題完全不能理解題意,只能隨意猜測(cè).
(1)求該生選擇題得滿分的概率;
(2)設(shè)該學(xué)生選擇題的得分為X,求X的分布列和數(shù)學(xué)期望EX,若該生要想每次選擇題的平均得分不少于40分,這樣才有更大的機(jī)會(huì)使整卷得到高分120分以上,問(wèn)是否還應(yīng)繼續(xù)努力以提高正確率?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)y=
9
4(1+4x2)
+x2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
4x-4,         x≤1
x2-4x+3, x>1
,則函數(shù)g(x)=f(x)+
1
2
 
的零點(diǎn)個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若球O的體積為36πcm3,則它的半徑等于
 
cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的兩個(gè)焦點(diǎn),拋物線y2=4x的焦點(diǎn)為橢圓E的一個(gè)焦點(diǎn),直線y=x+
3
上到焦點(diǎn)F1,F(xiàn)2距離之和最小的點(diǎn)P恰好在橢圓E上.
(1)求橢圓E的方程;
(2)如圖,過(guò)點(diǎn)S(0,-
1
3
)的動(dòng)直線l交橢圓于A、B兩點(diǎn),是否存在定點(diǎn)M,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案