如圖,多面體ABC-A1B1C1中,三角形ABC是邊長為4的正三角形,AA1∥BB1∥CC1,AA1⊥平面ABC,AA1=BB1=2CC1=4.
(1)若O是AB的中點,求證:OC1⊥A1B1;
(2)在線段AB1上是否存在一點D,使得CD∥平面A1B1C1,若存在,確定點D的位置;若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,四棱錐SABCD的底面是正方形,每條側(cè)棱的長都是底面邊長的倍,P為側(cè)棱SD上的點.
(1)求證:AC⊥SD;
(2)若SD⊥平面PAC,求二面角PACD的大小;
(3)在(2)的條件下,側(cè)棱SC上是否存在一點E,使得BE∥平面PAC.若存在,求SE∶EC的值;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四面體ABCD中作截面PQR,若PQ、CB的延長線交于M,RQ、DB的延長線交于N,RP、DC的延長線交于K.
求證:M、N、K三點共線.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
直三棱柱ABC-A1B1C1的底面為等腰直角三角形,∠BAC=90°,AB=AC=2,AA1=2,E,F分別是BC,AA1的中點.
求(1)異面直線EF和A1B所成的角.
(2)三棱錐A-EFC的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.
(1)求證:EF∥平面CB1D1;
(2)求證:平面CAA1C1⊥平面CB1D1.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在幾何體ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M為線段BD的中點,MC∥AE,且AE=MC=.
(1)求證:平面BCD⊥平面CDE;
(2)若N為線段DE的中點,求證:平面AMN∥平面BEC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形ABCD是菱形,ADNM是矩形,平面ADNM⊥平面ABCD,P為DN的中點.
(1)求證:BD⊥MC;
(2)線段AB上是否存在點E,使得AP∥平面NEC?若存在,說明在什么位置,并加以證明;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,AB是圓的直徑,PA垂直圓所在的平面,C是圓上的點.
(1)求證:平面PAC⊥平面PBC;
(2)若AB=2,AC=1,PA=1,求二面角C-PB-A的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面底面,且為等腰直角三角形,,、分別為、的中點.
(1)求證://平面 ;
(2)若線段中點為,求二面角的余弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com