如圖,圓柱的軸截面為正方形,、分別為上、下底面的圓心,為上底面圓周上一點(diǎn),已知,圓柱側(cè)面積等于.
(1)求圓柱的體積;
(2)求異面直線與所成角的大小.
(1);(2).
解析試題分析:(1)了解圓柱的概念,掌握?qǐng)A柱體積和側(cè)面積計(jì)算公式即能解決此題;(2)求異面直線所成角,經(jīng)常采用平移法,即通過(guò)平移,將異面直線所成角轉(zhuǎn)化為相交直線所成角來(lái)解決問(wèn)題,此題可通過(guò)平移至,轉(zhuǎn)化直線與所成角來(lái)處理.
試題解析:(1)設(shè)圓柱的底面半徑為,由題意, . 2分
. 6分
(2)連接,由于,
即為異面直線與所成角 (或其補(bǔ)角), 8分
過(guò)點(diǎn)作圓柱的母線交下底面于點(diǎn),連接,
由圓柱的性質(zhì),得為直角三角形,四邊形為矩形,,
由,由等角定理,得,所以,可解得,
在中,,
由余弦定理, 13分
異面直線與所成角. 14分
考點(diǎn):1.圓柱的體積與表面積;2.異面直線所成角.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
一個(gè)幾何體的正視圖為一個(gè)三角形,則這個(gè)幾何體可能是下列幾何體中的_______(填入所有可能的幾何體前的編號(hào))
①三棱錐 ②四棱錐 ③三棱柱 ④四棱柱 ⑤圓錐 ⑥圓柱
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四邊形ABCD中,∠DAB=90°,∠ADC=135°,AB=5,CD=2,AD=2,求四邊形ABCD繞AD旋轉(zhuǎn)一周所成幾何體的表面積及體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,三棱柱中,側(cè)棱垂直底面,
,,是棱的中點(diǎn)。
(1)證明:⊥平面
(2)設(shè),求幾何體的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
四面體及其三視圖如圖所示,過(guò)棱的中點(diǎn)作平行于,的平面分
別交四面體的棱于點(diǎn).
(1)證明:四邊形是矩形;
(2)求直線與平面夾角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知正三棱錐V-ABC的正視圖、側(cè)視圖和俯視圖如圖所示.
(1)畫(huà)出該三棱錐的直觀圖;
(2)求出側(cè)視圖的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=6,BD=8,E是PB上任意一點(diǎn),△AEC面積的最小值是3.
(1)求證:AC⊥DE;
(2)求四棱錐P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
設(shè)OA是球O的半徑,M是OA的中點(diǎn),過(guò)M且與OA成角的平面截球O的表面得到圓C.若圓C的面積等于,則球O的表面積等于 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com