已知橢圓:,過點(diǎn)的直線與橢圓交于、兩點(diǎn),若點(diǎn)恰為線段的中點(diǎn),則直線的方程為           

試題分析:設(shè),則有,以上兩式相減得,整理可得,因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824052623208490.png" style="vertical-align:middle;" />是的中點(diǎn),所以,所以,因?yàn)橹本過點(diǎn),則直線方程為,即。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)分別為橢圓的左、右兩個焦點(diǎn),若橢圓C上的點(diǎn)A(1,)到F1,F(xiàn)2兩點(diǎn)的距離之和等于4.
(1)寫出橢圓C的方程和焦點(diǎn)坐標(biāo);
(2)過點(diǎn)P(1,)的直線與橢圓交于兩點(diǎn)D、E,若DP=PE,求直線DE的方程;
(3)過點(diǎn)Q(1,0)的直線與橢圓交于兩點(diǎn)M、N,若△OMN面積取得最大,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知實(shí)數(shù)構(gòu)成一個等比數(shù)列,則圓錐曲線的離心率為(   )
A.B.C.D.或7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,為坐標(biāo)原點(diǎn),橢圓的左右焦點(diǎn)分別為,離心率為;雙曲線的左右焦點(diǎn)分別為,離心率為,已知,且.
(1)求的方程;
(2)過點(diǎn)作的不垂直于軸的弦,的中點(diǎn),當(dāng)直線交于兩點(diǎn)時,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓C:的左右焦點(diǎn)分別為,若橢圓C上恰好有6個不同的點(diǎn),使得為等腰三角形,則橢圓C的離心率取值范圍是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,橢圓上的點(diǎn)M與橢圓右焦點(diǎn)的連線與x軸垂直,且OM(O是坐標(biāo)原點(diǎn))與橢圓長軸和短軸端點(diǎn)的連線AB平行.
(1)求橢圓的離心率;
(2)過且與AB垂直的直線交橢圓于P、Q,若的面積是20,求此時橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

[2014·廈門模擬]已知橢圓+y2=1,F(xiàn)1,F(xiàn)2為其兩焦點(diǎn),P為橢圓上任一點(diǎn).則|PF1|·|PF2|的最大值為(  )
A.6B.4C.2D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的一個焦點(diǎn)為,且離心率為
(1)求橢圓方程;
(2)過點(diǎn)且斜率為的直線與橢圓交于兩點(diǎn),點(diǎn)關(guān)于軸的對稱點(diǎn)為,求△面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知雙曲線與橢圓有相同的焦點(diǎn),則該雙曲線的漸近線方程為(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案