數(shù)集A滿足條件:若a∈A,則
1
1-a
∈A(a≠1)
(1)若2∈A,試求出A中其他所有元素
(2)自己設(shè)計一個數(shù)屬于A,然后求出A中其他所有元素
(3)從上面的解答過程中,你能悟出什么道理?并大膽證明你發(fā)現(xiàn)的“道理”.
考點:元素與集合關(guān)系的判斷
專題:集合
分析:(1)根據(jù)條件進行遞推即可得到A中其他所有元素.
(2)不妨設(shè)x=3,求出A中其他所有元素
(3)根據(jù)(1)(2)的元素特點得到結(jié)論并證明.
解答: (1)若2∈A,則
1
1-2
=-1∈A
,
1
1+1
=
1
2
∈A
,
1
1-
1
2
=2∈A
,
即A中其他所有元素為-1,
1
2

(2)若3∈A,則
1
1-3
=-
1
2
∈A
,
1
1+
1
2
=
2
3
∈A
1
1-
2
3
=3∈A
,
即A中其他所有元素-
1
2
2
3

(3)A中只有三個元素a,
1
1-a
a-1
a
,且三個數(shù)的成績?yōu)?1.
證明:a∈A,則
1
1-a
∈A(a≠1且
1
1-a
≠1)
1
1-
1
1-a
=
a-1
a
∈A
,且
a-1
a
≠1
,
進而
1
1-
a-1
a
=a∈A
,
a≠
1
1-a
(若a=
1
1-a
,即a2-a+1=0,此時方程無解)
1
1-a
a-1
a
,
∴A中只有3個元素a,
1
1-a
,
a-1
a
,且三個數(shù)的成績?yōu)?1.
點評:本題主要考查元素和集合的關(guān)系,利用條件進行推理并總結(jié)規(guī)律是解決本題的關(guān)鍵,考查學生的推理能力.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知角α的終邊經(jīng)過點P(
3
,-1),則cosα-sinα=(  )
A、-
3
-1
2
;
B、-
3
+1
2
C、
3
-1
2
D、
3
+1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

正三棱錐的底面邊長為6,高為
3
,則這個三棱錐的全面積為( 。
A、9
3
B、18
3
C、9(
3
+
6
D、
9
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A={a1,a2,a3,a4,a5},B={a12,a22,a32,a42,a52},其中a1,a2,a3,a4,a5∈Z,設(shè)a1<a2<a3<a4<a5,且A∩B={a1,a4},a1+a4=10,又A∪B元素之和為224.求:
(1)a1,a4;      (2)a5;       (3)A.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:函數(shù)f(x)=loga(3-ax)(a>0且a≠1)
(1)若x∈[0,2]時,f(x)有意義,求實數(shù)a的取值范圍.
(2)是否存在實數(shù)a,使f(x)在區(qū)間[1,2]上單調(diào)遞減,且最大值為1?若存在,求出a的值,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

有兩個質(zhì)地均勻的骰子:其中一個是正四面體,各面分別標有數(shù)字1、2、3、4;另一個是正方體,各面分別標有數(shù)字1、2、3、4、5、6.
現(xiàn)有以下兩種游戲方案可供選擇:
方案一:連續(xù)拋擲正方體骰子三次,每次出現(xiàn)奇數(shù)得2張積分卡,出現(xiàn)偶數(shù)不得積分卡,
方案二:順次完成以下三步.
第一步:拋擲正方體骰子一次,出現(xiàn)不大于4的數(shù)字得2張積分卡,出現(xiàn)大于4的數(shù)字不得積分卡;
第二步:拋擲正四面體骰子一次,出現(xiàn)不大于3的數(shù)字得1張積分卡,出現(xiàn)大于3的數(shù)字不得積分卡;
第三步:拋擲正方體骰子一次,出現(xiàn)小于5的數(shù)字得2張積分卡,出現(xiàn)不小于5的數(shù)字不得積分卡.
(Ⅰ)求采用方案一所得到的總積分卡數(shù)X的分布列和數(shù)學期望;
(Ⅱ)為了得到更多的積分卡,你該選擇上述哪種方案?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

現(xiàn)有甲、乙兩個靶,某射手進行射擊訓練,每次射擊擊中甲靶的概率是p1,每次射擊擊中乙靶的概率是p2,其中p1>p2,已知該射手先后向甲、乙兩靶各射擊一次,兩次都能擊中與兩次都不能擊中的概率分別為
8
15
,
1
15
.該射手在進行射擊訓練時各次射擊結(jié)果互不影響.
(Ⅰ)求p1,p2的值;
(Ⅱ)假設(shè)該射手射擊乙靶三次,每次射擊擊中目標得1分,未擊中目標得0分.在三次射擊中,若有兩次連續(xù)擊中,而另外一次未擊中,則額外加1分;若三次全擊中,則額外加3分.記η為該射手射擊三次后的總的分數(shù),求η的分布列;
(Ⅲ)某研究小組發(fā)現(xiàn),該射手在n次射擊中,擊中目標的次數(shù)X服從二項分布.且射擊甲靶10次最有可能擊中8次,射擊乙靶10次最有可能擊中7次.試探究:如果X:B(n,p),其中0<p<1,求使P(X=k)(0≤k≤n)最大自然數(shù)k.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

由4名同學組成的志愿者招募宣傳隊,經(jīng)過初步選定,2名男同學,4名女同學共6名同學成為候選人,每位候選人當選宣傳隊隊員的機會是相同的.
(1)求當選的4名同學中恰有1名男同學的概率;
(2)求當選的4名同學中至少有3名女同學的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知關(guān)于x的不等式
2-x
+
x+1
<m
對于任意的x∈[-1,2]恒成立
(Ⅰ)求m的取值范圍;
(Ⅱ)在(Ⅰ)的條件下求函數(shù)f(m)=m+
1
(m-2)2
的最小值.

查看答案和解析>>

同步練習冊答案