11.如圖程序框圖的算法思路源于數(shù)學名著《幾何原本》中的“輾轉(zhuǎn)相除法”,執(zhí)行該程序框圖(圖中“mMODn”表示m除以n的余數(shù)),若輸入的m,n分別為325,125,則輸出的m=( 。
A.0B.5C.25D.45

分析 由已知中的程序框圖可知:該程序的功能是利用循環(huán)結(jié)構(gòu)計算并輸出變量m的值,模擬程序的運行過程,分析循環(huán)中各變量值的變化情況,可得答案.

解答 解:第1次執(zhí)行循環(huán)體,r=75,m=125,n=75,不滿足退出循環(huán)的條件;
第2次執(zhí)行循環(huán)體,r=50,m=75,n=50,不滿足退出循環(huán)的條件;
第3次執(zhí)行循環(huán)體,r=25,m=50,n=25,不滿足退出循環(huán)的條件;
第4次執(zhí)行循環(huán)體,r=0,m=25,n=0,滿足退出循環(huán)的條件;
故輸出的m值為25.
故選:C.

點評 本題考查的知識點是程序框圖,當循環(huán)的次數(shù)不多,或有規(guī)律時,常采用模擬循環(huán)的方法解答,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

1.已知某圓的極坐標方程為ρ2-4$\sqrt{2}$ρcos(θ-$\frac{π}{4}$)+6=0,求:
(1)圓的標準方程和參數(shù)方程;
(2)在圓上所有的點(x,y)中x•y的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知焦點為F的拋物線y2=2px(p>0)上有一點$A({m,2\sqrt{2}})$,以A為圓心,|AF|為半徑的圓被y軸截得的弦長為$2\sqrt{7}$,則m=(  )
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.已知拋物線x2=4y的焦點為F,設A(x1,y1),B(x2,y2)是拋物線上的兩個動點,如滿足y1+y2+2=$\frac{2\sqrt{3}}{3}$|AB|,則∠AFB的最大值( 。
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{3π}{4}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.如圖,以正方形ABCD中的點A為圓心,邊長AB為半徑作扇形EAB,若圖中兩塊陰影部分的面積相等,則∠EAD的弧度數(shù)大小為2-$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.隨著社會發(fā)展,襄陽市在一天的上下班時段也出現(xiàn)了堵車嚴重的現(xiàn)象.交通指數(shù)是交通擁堵指數(shù)的簡稱,是綜合反映道路網(wǎng)暢通或擁堵的概念.記交通指數(shù)為T,其范圍為[0,10],分別有5個級別:T∈[0,2)暢通;T∈[2,4)基本暢通;T∈[4,6)輕度擁堵;T∈[6,8)中度擁堵;T∈[8,10]嚴重擁堵.早高峰時段(T≥3 ),從襄陽市交通指揮中心隨機選取了一至四馬路之間50個交通路段,依據(jù)交通指數(shù)數(shù)據(jù)繪制的直方圖如圖所示:
(I)據(jù)此直方圖估算交通指數(shù)的中位數(shù)和平均數(shù);
(II)據(jù)此直方圖求出早高峰一至四馬路之間的3個路段至少有2個嚴重擁堵的概率是多少?
(III)某人上班路上所用時間若暢通時為20分鐘,基本暢通為30分鐘,輕度擁堵為35分鐘,中度擁堵為45分鐘,嚴重擁堵為60分鐘,求此人用時間的數(shù)學期望.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)=alnx-\frac{1}{2}{x^2}$,a∈R.
(Ⅰ)當a∈[1,e2]時,討論函數(shù)f(x)的零點的個數(shù);
(Ⅱ)令g(x)=tx2-4x+1,t∈[-2,2],當a∈[1,e]時,證明:對任意的${x_1}∈[1,\sqrt{e}]$,存在x2∈[0,1],使得f(x1)=g(x2).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.函數(shù)f(x)=|sinx|(x≥0)的圖象與過原點的直線恰有三個交點,設三個交點中橫坐標的最大值為θ,則$\frac{{(1+{θ^2})sin2θ}}{θ}$=2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知函數(shù)f(x)=$\frac{lnx}{x+a}$(a∈R),曲線y=f(x)在點(1,f(1))處的切線與直線x+y+1=0垂直.
(Ⅰ)試比較20162017與20172016的大小,并說明理由;
(Ⅱ)若函數(shù)g(x)=f(x)-k有兩個不同的零點x1,x2,證明:x1•x2>e2

查看答案和解析>>

同步練習冊答案