6.如圖所示,在直角梯形ABCD中,AB=7,AD=2,BC=3.如果AB邊上的點P使得以P,A,D為頂點的三角形和以P,B,C為頂點的三角形相似,那么這樣的點P有(  )
A.1個B.2個C.3個D.2個

分析 分兩種情況進(jìn)行分析,△DAP∽△CBP或△DAP∽△PBC,從而可求得點P的個數(shù).

解答 解:①當(dāng)△DAP∽△CBP時,AD:AP=BC:BP,將已知代入得AP=$\frac{14}{5}$;
②當(dāng)△DAP∽△PBC時,AD:AP=PB:BC,將已知代入得AP=1或AP=6
所以這樣的點有3個.
故選C.

點評 此題主要考查相似三角形的判定及梯形的性質(zhì)的綜合運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知向量$\overrightarrow m=(1\;,\;\;1)$,向量$\overrightarrow n$與向量$\overrightarrow m$夾角為$\frac{3}{4}π$,且$\overrightarrow m•\overrightarrow n=-1$.
(1)求向量$\overrightarrow n$;
(2)若向量$\overrightarrow n$與向量$\overrightarrow q=(1\;,\;\;0)$的夾角為$\frac{π}{2}$,向量$\overrightarrow p=(cosA\;,\;\;2{cos^2}\frac{C}{2})$,其中A、C為△ABC的內(nèi)角,且2B=A+C.求$|\overrightarrow n+\overrightarrow p|$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}滿足a1=1,an+1•an=2n(n∈N*),則S2017=(  )
A.21010-1B.21010-3C.3•21008-1D.21009-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.函數(shù)y=(2a-1)x(x∈N+)是減函數(shù),則a的取值范圍是(  )
A.a>1B.a<$\frac{1}{2}$C.$\frac{1}{2}$<a<1D.$\frac{1}{2}$≤a<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑的圓與AB交于點D,則$\frac{BD}{DA}$=( 。
A.$\frac{16}{9}$B.$\frac{25}{9}$C.$\frac{25}{16}$D.$\frac{5}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)集合S={x|x<-5或x>5},T={x|-7<x<3},則S∩T=( 。
A.{x|-7<x<-5}B.{x|3<x<5}C.{x|-5<x<3}D.{{x|-7<x<5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在數(shù)列{an}中,若${a_1}=1,{a_{n+1}}=2{a_n}+3({n∈{N^*}})$,則數(shù)列的通項公式是an=2n+1-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.若拋物線C1:y2=2px的準(zhǔn)線為x=-1,橢圓C2:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的一個焦點與拋物線C1的焦點重合,且以原點為圓心,橢圓C2的短半軸長為半徑的圓與直線y=x+$\sqrt{2}$相切.
(1)求橢圓C2的離心率;
(2)若0為坐標(biāo)原點,過點(2,0)的直線l與橢圓C2相交于不同兩點A、B,且橢圓C2上一點E滿足t$\overrightarrow{OE}$-$\overrightarrow{OA}$-$\overrightarrow{OB}$=$\overrightarrow{0}$,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各曲線的標(biāo)準(zhǔn)方程
(1)長軸長為12,離心率為$\frac{2}{3}$,焦點在x軸上的橢圓;
(2)過點A$(\frac{{\sqrt{6}}}{3},\sqrt{3})$和 B$(\frac{{2\sqrt{2}}}{3},1)$的橢圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

同步練習(xí)冊答案