(本題滿分14分)如圖,已知
為橢圓
的右焦點(diǎn),直線
過點(diǎn)
且與雙曲線
的兩條漸進(jìn)線
分別交于點(diǎn)
,與橢圓交于點(diǎn)
.
(I)若
,雙曲線的焦距為4。求橢圓方程。
(II)若
(
為坐標(biāo)原點(diǎn)),
,求橢圓的離心率
19、(本小題滿分14分)
解:(I)
,
是直線
與雙曲線兩條漸近線的交點(diǎn),
, 即
………………2分
雙曲線的焦距為4,
……………………4分
解得,
橢圓方程為
…………5分
(II)解:設(shè)橢圓的焦距為
,則點(diǎn)
的坐標(biāo)為
,
直線
的斜率為
,
直線
的斜率為
,
直線
的方程為
…………………………………………7分
由
解得
即點(diǎn)
設(shè)
由
,得
即
……10分。
點(diǎn)
在橢圓上,
………………………………12分
,
橢圓的離心率是
。 -----------------------------------14分
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
已知
分別為橢圓
的左、右兩個焦點(diǎn),一條直線
經(jīng)過點(diǎn)
與橢圓交于
兩點(diǎn), 且
的周長為8。
(1)求實(shí)數(shù)
的值;
(2)若
的傾斜角為
,求
的值。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
與橢圓
共焦點(diǎn),且兩條準(zhǔn)線間的距離為
的雙曲線方程為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本題滿分15分)如圖,點(diǎn)
為圓形紙片內(nèi)不同于圓心
的定點(diǎn),動點(diǎn)
在圓周上,將紙片折起,使點(diǎn)
與點(diǎn)
重合,設(shè)折痕
交線段
于點(diǎn)
.現(xiàn)將圓形紙片放在平面直角坐標(biāo)系
中,設(shè)圓
:
,記點(diǎn)
的軌跡為曲線
.
⑴證明曲線
是橢圓,并寫出當(dāng)
時該橢圓的標(biāo)準(zhǔn)方程;
⑵設(shè)直線
過點(diǎn)
和橢圓
的上頂點(diǎn)
,點(diǎn)
關(guān)于直線
的對稱點(diǎn)為點(diǎn)
,若橢圓
的離心率
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
在雙曲線
中,
,且雙曲線與橢圓
有公共焦點(diǎn),則雙曲線的方程是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知橢圓
(
,且
為常數(shù)),橢圓
焦點(diǎn)在
軸上,橢圓
的長軸長與橢圓
的短軸長相等,且橢圓
與橢圓
的離心率相等,則橢圓
的方程為:
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
過點(diǎn)
的橢圓
的離心率為
,橢圓與
軸交于兩點(diǎn)
,過點(diǎn)
的直線
與橢圓交于另一點(diǎn)
,并與
軸交于點(diǎn)
,直線
與直線
交于點(diǎn)
(1)當(dāng)直線
過橢圓的右焦點(diǎn)時,求線段
的長;
(2)當(dāng)點(diǎn)
異于點(diǎn)
時,求證:
為定值
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
.橢圓
與雙曲線
有相同的焦點(diǎn),則
的值是
A. | B.1或-2 | C.1或 | D.1 |
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
.已知拋物線
的準(zhǔn)線為
,焦點(diǎn)為F,
的圓心在
軸的正半軸上,且與
軸相切,過原點(diǎn)O作傾斜角為
的直線
,交
于點(diǎn)A,交
于另一點(diǎn)B,且AO=OB=2.
(1)求
和拋物線C的方程;
(2)若P為拋物線C上的動點(diǎn),求
的最小值;
(3)過
上的動點(diǎn)Q向
作切線,切點(diǎn)為S,T,求證:直線ST恒過一個定點(diǎn),并求該定點(diǎn)的坐標(biāo).
查看答案和解析>>