分析 畫(huà)出約束條件的可行域,化簡(jiǎn)目標(biāo)函數(shù)利用斜率的范圍,求解目標(biāo)函數(shù)的范圍即可.
解答 解:不等式組$\left\{\begin{array}{l}x+y≥1\\ x≥0{,_{\;}}y≥0\end{array}\right.$所表示的區(qū)域如圖:
則$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$=$\sqrt{1+\frac{2xy}{{x}^{2}+{y}^{2}}}$=$\sqrt{1+\frac{2}{\frac{x}{y}+\frac{y}{x}}}$,$\frac{y}{x}$∈[0,+∞).
$\frac{y}{x}+\frac{x}{y}$≥2,當(dāng)且僅當(dāng)x=y是取等號(hào),則$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的最大值為:$\sqrt{2}$.
當(dāng)y=0時(shí),則$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的最小值為:1.
所以$\frac{x+y}{{\sqrt{{x^2}+{y^2}}}}$的取值范圍是[1,$\sqrt{2}$].
故答案為:[1,$\sqrt{2}$].
點(diǎn)評(píng) 本題考查線性規(guī)劃的簡(jiǎn)單應(yīng)用,考查數(shù)形結(jié)合以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3+2$\sqrt{2}$ | B. | 3+2$\sqrt{3}$ | C. | 7 | D. | 11 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com