分析 (1)f′(x)=$\frac{1-lnx}{{x}^{2}}$,可得切線的斜率f′(1),利用點(diǎn)斜式即可得出.
(2)f(x)≤x-1在定義域(0,+∞)內(nèi)恒成立?$\frac{lnx}{x}$-x+1≤0,(x>0)?lnx-x2+x≤0,(x>0).令g(x)=lnx-x2+x,利用導(dǎo)數(shù)研究其單調(diào)性極值與最值即可證明.
解答 (1)解:f′(x)=$\frac{1-lnx}{{x}^{2}}$,f′(1)=$\frac{1-ln1}{1}$=1,f(1)=0,
∴曲線C:y=$\frac{lnx}{x}$在點(diǎn)(1,0)處的切線L的方程為:y-0=x-1,即x-y-1=0.
(2)證明:f(x)≤x-1在定義域(0,+∞)內(nèi)恒成立?$\frac{lnx}{x}$-x+1≤0,(x>0)?lnx-x2+x≤0,(x>0).
令g(x)=lnx-x2+x,g′(x)=$\frac{1}{x}$-2x+1=$\frac{1-2{x}^{2}+x}{x}$=$\frac{-(2x+1)(x-1)}{x}$,(x>0).
可得x∈(0,1)時(shí),g′(x)>0,此時(shí)函數(shù)g(x)單調(diào)遞增;x∈(1,+∞)時(shí),g′(x)<0,此時(shí)函數(shù)g(x)單調(diào)遞減.
∴x=1時(shí),函數(shù)g(x)取得極大值即最大值,g(1)=ln1-1+1=0,∴g(x)≤0在在定義域(0,+∞)內(nèi)恒成立,
即f(x)≤x-1在定義域內(nèi)恒成立.
點(diǎn)評 本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性極值與最值、等價(jià)轉(zhuǎn)化方法、不等式的解法、導(dǎo)數(shù)的幾何意義及其應(yīng)用,考查了分析問題與解決問題的能力、推理能力與計(jì)算能力,屬于難題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
ξ | 0 | 1 | 2 |
P | $\frac{1}{2}$ | $\frac{1}{3}$ | p |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [$\frac{{\sqrt{3}}}{3}$,$\sqrt{3}$] | B. | [1,$\sqrt{3}$] | C. | [1,+∞) | D. | (-∞,-$\sqrt{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 2+i | B. | -2+i | C. | -2-i | D. | 2-i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com