12.已知某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積是( 。
A.3cm3B.5cm3C.4cm3D.6cm3

分析 根據(jù)幾何體的三視圖,得出該幾何體是平放的直四棱柱,結(jié)合圖中數(shù)據(jù)求出它的體積即可.

解答 解:根據(jù)幾何體的三視圖,得;該幾何體是平放的直四棱柱,
且四棱柱的底面如側(cè)視圖所示,可以分割為一個(gè)梯形和一個(gè)直角三角形(如圖),

S底面=$\frac{1}{2}×1×2+\frac{1}{2}(1+2)×1=\frac{5}{2}$
∴該四棱柱的體積為V四棱柱=S底面h=$\frac{5}{2}×$2=5.
故選:B.

點(diǎn)評 本題考查的知識點(diǎn)是由三視圖求體積,其中根據(jù)已知的三視圖分析出幾何體的形狀是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)正項(xiàng)數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}=\frac{1}{2}a_n^2+\frac{n}{2}(n∈{N^*})$.
(1)計(jì)算a1,a2,a3的值,并猜想{an}的通項(xiàng)公式;
(2)用數(shù)學(xué)歸納法證明{an}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.在研究吸煙與患有肺病的關(guān)系中,通過收集數(shù)據(jù)、整理分析數(shù)據(jù)得“吸煙與患有肺病有關(guān)”的結(jié)論,并且有99%以上的把握認(rèn)為這個(gè)結(jié)論是成立的,則有以下說法:
①在100個(gè)吸煙者中至少有99個(gè)人患有肺。
②若1個(gè)人吸煙,那么這個(gè)人有99%的概率患有肺病;
③在100個(gè)吸煙者中一定有患肺病的人;
④在100個(gè)吸煙者中可能沒有一個(gè)患肺病的人.你認(rèn)為正確的說法是②④.
(填上你認(rèn)為正確的所有說法的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(lnx)^{2}+alnx+b,x>0}\\{{e}^{x}+\frac{1}{4},x≤0}\end{array}\right.$,且f(e)=f(1),f(e2)=f(0)+$\frac{11}{4}$,則函數(shù)f(x)的值域?yàn)椋ā 。?table class="qanwser">A.($\frac{1}{4}$,$\frac{5}{4}$]∪($\frac{7}{4}$,+∞)B.($\frac{1}{4}$,$\frac{7}{4}$)C.(-∞,$\frac{1}{4}$]∪[$\frac{5}{4}$,+∞)D.($\frac{1}{4}$,$\frac{5}{4}$]∪[$\frac{7}{4}$,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知平面向量$\overrightarrow a$與$\overrightarrow b$的夾角等于$\frac{π}{3}$,若|$\overrightarrow a$|=2,|$\overrightarrow b$|=3,則|2$\overrightarrow a$-3$\overrightarrow b$|=( 。
A.$\sqrt{57}$B.$\sqrt{61}$C.57D.61

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)D=$\sqrt{{{({x-a})}^2}+{{({lnx-\frac{a^2}{4}})}^2}}+\frac{a^2}{4}$+1.(a∈R),則D的最小值為( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.空間四邊形ABCD的四個(gè)頂點(diǎn)都在同一球面上,E、F分別是AB、CD的中點(diǎn),且EF⊥AB,EF⊥CD,若AB=8,CD=EF=4,則該球的半徑等于( 。
A.$\frac{{65\sqrt{2}}}{16}$B.$\frac{{65\sqrt{2}}}{8}$C.$\frac{{\sqrt{65}}}{2}$D.$\sqrt{65}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知圓C:(x-a)2+(y-2)2=4(a>0)與直線l:x-y+3=0交于兩點(diǎn)A,B.
(1)當(dāng)直線l被圓C截得的弦長為$2\sqrt{2}$時(shí),求a的值;
(2)若圓上存在點(diǎn)P,滿足$\overrightarrow{CA}+\overrightarrow{CB}=\overrightarrow{CP}$,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖,給出的是$1+\frac{1}{3}+\frac{1}{5}+…+\frac{1}{99}$的值的一個(gè)程序框圖,判斷框內(nèi)應(yīng)填入的條件是( 。
A.i<99B.i≤99C.i>99D.i≥99

查看答案和解析>>

同步練習(xí)冊答案