分析 分別求出p,q成立的a的范圍,根據(jù)復(fù)合命題的真假,求出a的范圍即可.
解答 解:先看命題p:
∵函數(shù)y=loga(x+1)在(-1,+∞)內(nèi)單調(diào)遞減,a>0,a≠1,
∴命題p為真時?0<a<1;
再看命題q:
當(dāng)命題q為真時,二次函數(shù)對應(yīng)的一元二次方程根的判別式滿足
△=(2a-3)2-4>0⇒0<a<$\frac{1}{2}$或a>$\frac{5}{2}$;
如果p或q為真命題,則p真或q真,
故0<a<1或a>$\frac{5}{2}$.
點評 本題以函數(shù)的單調(diào)性和二次函數(shù)零點的問題為載體,考查了命題真假的判斷與應(yīng)用,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 即不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 6π+1 | B. | $\frac{{({24+\sqrt{2}})π}}{4}+1$ | C. | $\frac{{({23+\sqrt{2}})π}}{4}+\frac{1}{2}$ | D. | $\frac{{({23+\sqrt{2}})π}}{4}+1$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com