函數(shù)f(x)=-x2+2x在[0,10]上的最大值為
 
考點(diǎn):二次函數(shù)在閉區(qū)間上的最值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:首先把二次函數(shù)的一般式轉(zhuǎn)化成頂點(diǎn)式,進(jìn)一步利用對(duì)稱軸和定義域的關(guān)系求出結(jié)果.
解答: 解:f(x)=-x2+2x=-(x-1)2+1
二次函數(shù)為開(kāi)口方向向下,對(duì)稱軸方程為:x=1
當(dāng)x=1時(shí)函數(shù)取最大值1
故答案為:1
點(diǎn)評(píng):本題考查的知識(shí)要點(diǎn):二次函數(shù)的頂點(diǎn)式與一般式的互化,利用對(duì)稱軸和定義域的關(guān)系求最值
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱錐P-ABCD的底面是邊長(zhǎng)為1的正方形,側(cè)棱PA⊥底面ABCD,且PA=2,E是側(cè)棱PA上的動(dòng)點(diǎn).
(1)求四棱錐P-ABCD的體積;
(2)如果E是PA的中點(diǎn),求證PC∥平面BDE;
(3)是否不論點(diǎn)E在側(cè)棱PA的任何位置,都有BD⊥CE?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,⊙O的兩條切線PA和PB相交于點(diǎn)P,與⊙O相切于A,B兩點(diǎn),C是⊙O上的一點(diǎn),若∠P=70°,則∠ACB=
 
.(用角度表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知兩條直線l1:2x-y+1=0,l2:ax+y+2=0,點(diǎn)P(3,1).
(Ⅰ)直線l過(guò)點(diǎn)P,且與直線l1垂直,求直線l的方程;
(Ⅱ)若直線l1與直線l2平行,求a的值;
(Ⅲ)點(diǎn)P到直線l2距離為3
2
,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式|y|≤x表示的平面區(qū)域?yàn)椋ā 。?/div>
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=f(x)滿足:f(x+1)=x2+x+1.
(1)求f(x)的解析式;
(2)求f(x)在區(qū)間[0,2]上的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2f(x)的圖象如圖所示,則函數(shù)f(x)的單調(diào)遞增區(qū)間為( 。
A、(-∞,0)和(2,+∞)
B、(0,2)
C、(-∞,0)∪(2,+∞)
D、(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

F1、F2分別是橢圓
x2
49
+
y2
24
=1的左、右焦點(diǎn),點(diǎn)P在橢圓上,且|PF1|-|PF2|=2,則△PF1F2的面積為(  )
A、24
3
B、24
C、48
3
D、48

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=logπ3,b=20.3,c=log2
1
3
,則(  )
A、a>b>c
B、a>c>b
C、c>a>b
D、b>a>c

查看答案和解析>>

同步練習(xí)冊(cè)答案