點(diǎn)(2,2)關(guān)于直線(xiàn)x-y+3=0的對(duì)稱(chēng)點(diǎn)坐標(biāo)是
 
考點(diǎn):與直線(xiàn)關(guān)于點(diǎn)、直線(xiàn)對(duì)稱(chēng)的直線(xiàn)方程
專(zhuān)題:直線(xiàn)與圓
分析:設(shè)點(diǎn)(2,2)關(guān)于直線(xiàn)x-y+3=0的對(duì)稱(chēng)點(diǎn)坐標(biāo)是(a,b),再根據(jù)垂直、和中點(diǎn)在對(duì)稱(chēng)軸上這兩個(gè)條件求得a、b的值,可得結(jié)論.
解答: 解:設(shè)點(diǎn)(2,2)關(guān)于直線(xiàn)x-y+3=0的對(duì)稱(chēng)點(diǎn)坐標(biāo)是(a,b),
則由
b-2
a-2
•1=-1
a+2
2
-
b+2
2
+3=0
,求得
a=-1
b=5
,
故答案為(-1,5).
點(diǎn)評(píng):本題主要考查求一個(gè)點(diǎn)關(guān)于某直線(xiàn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)的方法,利用了垂直、和中點(diǎn)在對(duì)稱(chēng)軸上這兩個(gè)條件,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四邊形ABCD為直角梯形,AD∥BC,∠BAD=90°,PA⊥平面ABCD,且PA=AB,M為PC的中點(diǎn),求證:PB⊥DM.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某環(huán)保部門(mén)對(duì)某處的環(huán)境情況用“污染指數(shù)”來(lái)監(jiān)測(cè),據(jù)測(cè)定,該處的“污染指數(shù)”與附近污染源的強(qiáng)度和距離之比成正比,比例常數(shù)為k(k>0).現(xiàn)已知相距36km的A,B兩家化工廠(chǎng)(污染源)的污染強(qiáng)度分別為正數(shù)1,a,它們連線(xiàn)上任意一點(diǎn)C處的污染指數(shù)y等于兩化工廠(chǎng)對(duì)該處的污染指數(shù)之和.設(shè)AC=x(km).
(1)試將y表示為x的函數(shù),指出其定義域;
(2)當(dāng)x=6時(shí),C處“污染指數(shù)”最小,試求B化工廠(chǎng)的污染強(qiáng)度a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a
、
b
、
c
有公共起點(diǎn)
c
=m
a
+n
b
,要使
a
、
b
c
的終點(diǎn)在一條直線(xiàn)上,則m n應(yīng)滿(mǎn)足
 
條件.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知梯形ABCD的直觀(guān)圖如圖,且A′B′=2,B′C′=2,A′D′=6,梯形ABCD的面積S=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在裝有相同數(shù)量的白球和黑球的口袋中放進(jìn)1個(gè)白球,此時(shí)由這個(gè)口袋中取出1個(gè)白球的概率比口袋中原來(lái)取出一個(gè)白球的概率大0.1,則口袋中原有球的個(gè)數(shù)是( 。
A、2B、4C、8D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
b
,
c
兩兩互相垂直,|
a
|=2,|
b
|=3,|
c
|=4,
m
=
a
+
b
+
c

(1)求|
m
|;
(2)求向量
m
與向量
a
的夾角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為a的正四面體ABCD的四個(gè)頂點(diǎn)均在同一個(gè)球面上,則此球的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)拋物線(xiàn)y2=3x上一定點(diǎn)M(x0,y0)(y0>0),作兩條直線(xiàn)MA、MB分別交拋物線(xiàn)于A(yíng)(x1,y1),B(x2,y2),當(dāng)直線(xiàn)MA與MB的斜率存在且傾斜角互補(bǔ)時(shí),
y1+y2
3y0
的值是( 。
A、
1
3
B、
2
3
C、-3
D、-
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案