△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知cos(A-C)+cosB=1,a=2c,則C=( 。
分析:由cos(A-C)+cosB=cos(A-C)-cos(A+C)=1,可得sinAsinC=
1
2
,由a=2c及正弦定理可得sinA=2sinC,聯(lián)解得到sinC的值,從而得到角C的大小
解答:解:由B=π-(A+C)可得cosB=-cos(A+C)
∴cos(A-C)+cosB=cos(A-C)-cos(A+C)=2sinAsinC=1
∴sinAsinC=
1
2
…①
由a=2c及正弦定理可得sinA=2sinC…②
①②聯(lián)解可得,sin2C=
1
4

∵0<C<π,∴sinC=
1
2

結(jié)合a=2c即a>c,得C為銳角,∴C=
π
6

故選:B
點(diǎn)評(píng):本題給出三角形的角滿足的關(guān)系式,在a=2c的情況下求角C大。乜疾榱藘山呛团c差的余弦公式及正弦定理的等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C所對(duì)的邊分別為a、b、c,已知a=1,b=2,cosC=
14

(Ⅰ)求△ABC的周長(zhǎng);
(Ⅱ)求cos(A-C)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•唐山二模)△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,△ABC的面積S=
3
4
(c2-a2-b2)

(Ⅰ)求C;
(Ⅱ)若a+b=2,且c=
3
,求A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2011•寶坻區(qū)一模)設(shè)函數(shù)f(x)=sinx+cos(x+
π
6
),x∈R
(Ⅰ)求函數(shù)f(x)的最小正周期和值域;
(Ⅱ)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=
3
2
,且a=
3
2
b
,求角C的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,三邊長(zhǎng)a、b、c成等比數(shù)列,且a2=c2+ac-bc,則
asinB
b
的值為
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•上海)已知△ABC的內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,若3a2+2ab+3b2-3c2=0,則角C的大小是
π-arccos
1
3
π-arccos
1
3

查看答案和解析>>

同步練習(xí)冊(cè)答案