設(shè)函數(shù)f(x)=, 當(dāng)x∈[-4, 0]時(shí), 恒有f(x)≤g(x), 則a可能取的一個(gè)值是  (      )                                                                        
A. -5B. 5C.-D.
A  
排除法,
若a=5,則x=0時(shí)f(x)=5,g(x)=1,故A錯(cuò)
若a=,則x=" -" 4時(shí)f(x)=,g(x)=,故C錯(cuò)
若a=,則x=0時(shí)f(x)=,g(x)=1,故D錯(cuò)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

設(shè)g(x)為R上不恒等于0的奇函數(shù),(a>0且a≠1)為偶函數(shù),則常數(shù)b的值為(   )
A.2B.1 C.D.與a有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

右圖是某種凈水水箱結(jié)構(gòu)的設(shè)計(jì)草圖,其中凈水器是一個(gè)寬10cm、體積為3000cm3的長(zhǎng)方體,長(zhǎng)和高未定.凈水水箱的長(zhǎng)、寬、高比凈水器的長(zhǎng)、寬、高分別長(zhǎng)20cm、20cm、60cm.若不計(jì)凈水器中的存水,則凈水水箱中最少可以存水             cm3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)為奇函數(shù),且在內(nèi)是增函數(shù),又,則的解集為
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)滿(mǎn)足,且時(shí),,則的圖象的交點(diǎn)個(gè)數(shù)為           .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知f(x)、g(x)是定義在[a,b]上的函數(shù),若對(duì)任意,總有,則稱(chēng)f(x)可被g(x)替代,試判斷函數(shù)能否被替代,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)的定義域?yàn)?i>R,若存在常數(shù),使對(duì)一切實(shí)數(shù)均成立,則稱(chēng)為“倍約束函數(shù)”.現(xiàn)給出下列函數(shù):①;②;③;④;⑤是定義在實(shí)數(shù)集R上的奇函數(shù),且對(duì)一切均有.其中是“倍約束函數(shù)”的序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

(本小題滿(mǎn)分12分)某商場(chǎng)以100元/件的價(jià)格購(gòu)進(jìn)一批襯衣,以高于進(jìn)價(jià)的價(jià)格出售,銷(xiāo)售有淡季旺季之分.通過(guò)市場(chǎng)調(diào)查發(fā)現(xiàn):①銷(xiāo)售量(件)與襯衣標(biāo)價(jià)x(元/件)在銷(xiāo)售旺季近似地符合函數(shù)關(guān)系:;在銷(xiāo)售淡季近似地符合函數(shù)關(guān)系:、、為常數(shù);②在銷(xiāo)售旺季,商場(chǎng)以140元/件的價(jià)格銷(xiāo)售能獲得最大銷(xiāo)售利潤(rùn);③若稱(chēng)①中時(shí)的標(biāo)價(jià)x為襯衣的“臨界價(jià)格”,則銷(xiāo)售旺季的“臨界價(jià)格”是銷(xiāo)售淡季的“臨界價(jià)格”的1.5倍.
請(qǐng)根據(jù)上述信息,完成下面問(wèn)題:
(Ⅰ)填出表格中空格的內(nèi)容;
數(shù)量關(guān)系
銷(xiāo)售季節(jié)
標(biāo)價(jià)
(元/件)
銷(xiāo)售量(件)
(含k、b1b­2
不同季節(jié)的銷(xiāo)售總利潤(rùn)y(元)
與標(biāo)價(jià)x(元/件)的函數(shù)關(guān)系式
旺 季
x

 
淡 季
x
 
 
  (Ⅱ)在銷(xiāo)售淡季,該商場(chǎng)要獲得最大銷(xiāo)售利潤(rùn),襯衣的標(biāo)價(jià)應(yīng)定為多少元才合適?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿(mǎn)分12分)
兩縣城A和B相聚20km,現(xiàn)計(jì)劃在兩縣城外以AB為直徑的半圓弧上選擇一點(diǎn)C建造垃圾處理廠(chǎng),其對(duì)城市的影響度與所選地點(diǎn)到城市的的距離有關(guān),對(duì)城A和城B的總影響度為城A與城B的影響度之和,記C點(diǎn)到城A的距離為x km,建在C處的垃圾處理廠(chǎng)對(duì)城A和城B的總影響度為y,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠(chǎng)對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k ,當(dāng)垃圾處理廠(chǎng)建在的中點(diǎn)時(shí),對(duì)稱(chēng)A和城B的總影響度為0.0065.(1)將y表示成x的函數(shù);(11)討論(1)中函數(shù)的單調(diào)性,并判斷弧上是否存在一點(diǎn),使建在此處的垃圾處理廠(chǎng)對(duì)城A和城B的總影響度最。咳舸嬖,求出該點(diǎn)到城A的距離,若不存在,說(shuō)明理由。

查看答案和解析>>

同步練習(xí)冊(cè)答案