15.已知函數(shù)f(x)=$\frac{{lnx+{{(x-b)}^2}}}{x}$,若存在x∈[$\frac{1}{2}$,2],使得xf'(x)+f(x)>0,則實數(shù)b的取值范圍是( 。
A.$(-∞,\frac{3}{2})$B.$(-∞,\frac{3}{2}]$C.$(-∞,\frac{9}{4})$D.$(-∞,\frac{9}{4}]$

分析 求導(dǎo)函數(shù),問題化簡轉(zhuǎn)化為b<x+$\frac{1}{2x}$,設(shè)g(x)=x+$\frac{1}{2x}$,只需b<g(x)max,結(jié)合函數(shù)的單調(diào)性可得函數(shù)的最大值,故可求實數(shù)b的取值范圍.

解答 解:∵f(x)=$\frac{{lnx+{{(x-b)}^2}}}{x}$,x>0,
∴f′(x)=$\frac{1+2x(x-b)-lnx-({x-b)}^{2}}{{x}^{2}}$,
∴f(x)+xf′(x)=$\frac{1+2x(x-b)}{x}$,
∵存在x∈[$\frac{1}{2}$,2],使得f(x)+xf′(x)>0,
∴1+2x(x-b)>0
∴b<x+$\frac{1}{2x}$,
設(shè)g(x)=x+$\frac{1}{2x}$,
∴b<g(x)max
∴g′(x)=$\frac{2{x}^{2}-1}{2{x}^{2}}$,
當g′(x)=0時,解得:x=$\frac{\sqrt{2}}{2}$,
當g′(x)>0時,即$\frac{\sqrt{2}}{2}$<x≤2時,函數(shù)單調(diào)遞增,
當g′(x)<0時,即$\frac{1}{2}$≤x<$\frac{\sqrt{2}}{2}$時,函數(shù)單調(diào)遞減,
∴當x=2時,函數(shù)g(x)取最大值,最大值為g(2)=$\frac{9}{4}$,
∴b<$\frac{9}{4}$,
故選:C.

點評 本題考查導(dǎo)數(shù)知識的運用,考查恒成立問題,考查函數(shù)的最值,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.執(zhí)行如圖所示的程序框圖,則輸出的s值為( 。
A.$\frac{11}{6}$B.$\frac{13}{6}$C.$\frac{25}{12}$D.$\frac{29}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知$|{\overrightarrow a}|=4,|{\overrightarrow b}|=5,\overrightarrow c=λ\overrightarrow a+μ\overrightarrow b(λ,μ∈$R),若$\overrightarrow a⊥\overrightarrow b,\overrightarrow c⊥({\overrightarrow b-\overrightarrow a})$,則$\frac{λ}{μ}$=$\frac{25}{16}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)直線y=kx+1與圓x2+y2+2x-my=0相交于A,B兩點,若點A,B關(guān)于直線l:x+y=0對稱,則|AB|=$\sqrt{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=x2-1-2alnx(a≠0),求函數(shù)f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.過點M(2,1)的直線與圓:(x+1)2+(y-5)2=9相切于點N,則|MN|=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.過定點(-2,0)的直線l與曲線C:(x-2)2+y2=4(0≤x≤3)交于不同的兩點,則直線l的斜率的取值范圍是$({-\frac{{\sqrt{3}}}{3},-\frac{{\sqrt{3}}}{5}}]∪[{\frac{{\sqrt{3}}}{5},\frac{{\sqrt{3}}}{3}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.運行如下程序框圖,如果輸入的t∈[0,5],則輸出S屬于( 。
A.[-4,10)B.[-5,2]C.[-4,3]D.[-2,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.如圖所示某物體的三視圖,則求該物體的體積為(  )
A.$8-\frac{5π}{12}$B.$8-\frac{π}{3}$C.$8-\frac{π}{2}$D.$8-\frac{7π}{12}$

查看答案和解析>>

同步練習(xí)冊答案