20.過點(diǎn)M(2,1)的直線與圓:(x+1)2+(y-5)2=9相切于點(diǎn)N,則|MN|=4.

分析 由題意畫出圖形,求出M與圓心的距離,利用勾股定理求得|MN|.

解答 解:如圖,
設(shè)圓心為C(-1,5),連接CN,則CN⊥MN,
∵|MC|2=(-1-2)2+(5-1)2=25,r2=9,
∴|MN|=$\sqrt{|MC{|}^{2}-{r}^{2}}=4$.
故答案為:4.

點(diǎn)評 本題考查圓的切線方程,考查直線與圓位置關(guān)系的應(yīng)用,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}x=m+\frac{1}{2}t\\ y=\frac{{\sqrt{3}}}{2}t\end{array}\right.(t$為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),以x軸正半軸為極軸建立極坐標(biāo)系,橢圓C的極坐標(biāo)方程為$5{cos^2}θ+9{sin^2}θ=\frac{45}{ρ^2}$,且直線l經(jīng)過橢圓C的右焦點(diǎn)F.
(1)求橢圓C的內(nèi)接矩形PMNQ面積的最大值;
(2)若直線l與橢圓C交于A,B兩點(diǎn),求|FA|•|FB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.執(zhí)行如圖所示的程序框圖,則輸出S的值是( 。
A.145B.148C.278D.285

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.(1-x)8+(1-x24的展開式中x6項的系數(shù)為24.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=$\frac{{lnx+{{(x-b)}^2}}}{x}$,若存在x∈[$\frac{1}{2}$,2],使得xf'(x)+f(x)>0,則實(shí)數(shù)b的取值范圍是( 。
A.$(-∞,\frac{3}{2})$B.$(-∞,\frac{3}{2}]$C.$(-∞,\frac{9}{4})$D.$(-∞,\frac{9}{4}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)函數(shù)$f(x)=mlnx+\frac{n}{x}$,曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程為y=x-1.
(Ⅰ)求實(shí)數(shù)m,n的值;
(Ⅱ)若b>a>1,$A=f(\frac{a+b}{2})$,$B=\frac{f(a)+f(b)}{2}$,$C=\frac{bf(b)-af(a)}{b-a}-1$,試判斷A,B,C三者是否有確定的大小關(guān)系,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.如圖,平面PAB⊥平面α,AB?α,且△PAB為正三角形,點(diǎn)D是平面α內(nèi)的動點(diǎn),ABCD是菱形,點(diǎn)O為AB中點(diǎn),AC與OD交于點(diǎn)Q,I?α,且l⊥AB,則PQ與I所成角的正切值的最小值為( 。
A.$\sqrt{-3+\frac{3\sqrt{7}}{2}}$B.$\sqrt{3+\frac{3\sqrt{7}}{2}}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.執(zhí)行如圖所示的程序框圖,輸出的a,b的值分別等于( 。
A.32,$-\frac{{\sqrt{2}}}{6}-\frac{1}{3}$B.32,$\frac{{\sqrt{2}}}{6}+\frac{1}{3}$C.8,$-\frac{{\sqrt{2}}}{2}-1$D.32,$\frac{{\sqrt{2}}}{2}+1$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知直線$l:y=\sqrt{3}x-2\sqrt{3}$過橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦點(diǎn)F2,且橢圓C的中心關(guān)于直線l的對稱點(diǎn)在直線$x=\frac{a^2}{c}$(其中2c為焦距)上,直線m過橢圓左焦點(diǎn)F1交橢圓C于M、N兩點(diǎn).
(1)求橢圓C的方程;
(2)設(shè)$\overrightarrow{OM}•\overrightarrow{ON}=\frac{2λ}{tan∠MON}≠0$(O為坐標(biāo)原點(diǎn)),當(dāng)直線m繞點(diǎn)F1轉(zhuǎn)動時,求λ的最大值.

查看答案和解析>>

同步練習(xí)冊答案