一只受傷的丹頂鶴在如圖所示(直角梯形)的草原上飛過,其中AD=
2
,DC=2,BC=1,它可能隨機在草原上任何一處(點),若落在扇形沼澤區(qū)域ADE以外丹頂鶴能生還,則該丹頂鶴生還的概率是( 。
A、
1
2
-
π
15
B、1-
π
10
C、1-
π
6
D、1-
10
考點:幾何概型
專題:概率與統(tǒng)計
分析:過點D作DF⊥AB于點F,求出梯形的面積,扇形ADE的面積,利用幾何概型求出結(jié)果.
解答: 解:過點D作DF⊥AB于點F,在Rt△AFD中,易知AF=1,∠A=45°,
梯形的面積S1=
1
2
(2+2+1)×1=
5
2
,扇形ADE的面積S2=
1
2
×(
2
)2×
π
4
=
π
4
,則丹頂鶴生還的概率P=
S1-S2
S1
=
5
2
-
π
4
5
2
=1-
π
10

故選B.
點評:本題考查幾何概型的應用,幾何圖形的面積的求法,考查計算能力.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

由花盆擺成如圖圖案,根據(jù)擺放規(guī)律,可得第5個圖形中的花盆數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=
2
x
-x,x<0
x2,x≥0

(I)若f(a)=1,求a的值;
(Ⅱ)確定函數(shù)f(x)在區(qū)間(-∞,0)上的單調(diào)性,并用定義證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

a
=(m,4)(m>0),且|
a
|=5,則m的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓E:
x2
8
+
y2
4
=1
的左焦點為F,直線l:x=-4與x軸的交點是圓C的圓心,圓C恰好經(jīng)過坐標原點O,設G是圓C上任意一點.
(Ⅰ)求圓C的方程;
(Ⅱ)若直線FG與直線l交于點T,且G為線段FT的中點,求直線FG被圓C所截得的弦長;
(Ⅲ)在平面上是否存在一點P,使得
GF
GP
=
1
2
?若存在,求出點P坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設向量
a
b
滿足|
a
+
b
|=
6
,|
a
|=1,|
b
|=2,則
a
b
等于(  )
A、
1
5
B、
1
4
C、
1
3
D、
1
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知三個實數(shù)a=0.76,b=60.7,c=log
 
6
0.7
,則a,b,c的大小關系正確的為( 。
A、a<b<c
B、a<c<b
C、c<a<b
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
m
|=4,|
n
|=3,
m
n
的夾角為60°,
a
=4
m
-
n
,
b
=
m
+2
n
,
c
=2
m
-3
n
.求:
(1)
a
2+
b
2+
c
2
(2)
a
b
+2
b
c
-3
c
a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設集合A={x|2≤x<4},B={x|3x-7≥8-2x},求A∪B,A∩B,∁R(A∩B).

查看答案和解析>>

同步練習冊答案