分析 (1)連接AF,通過計算利用勾股定理證明DF⊥AF,證明DF⊥PA,推出DF⊥平面PAF,然后證明DF⊥PF.
(2)通過VA-PFD=VP-AFD,轉(zhuǎn)化求解點(diǎn)A到平面PFD的距離即可.
解答 (1)證明:連接AF,則$AF=\sqrt{2}$,$DF=\sqrt{2}$,
又AD=2,∴DF2+AF2=AD2,∴DF⊥AF,
又PA⊥平面ABCD,∴DF⊥PA,又PA∩AF=A,
∴DF⊥平面PAF,
又PF?平面PAF,
∴DF⊥PF.
(2)解:${V_{P-AFD}}=\frac{1}{3}{S_{△AFD}}•PA=\frac{1}{3}×1×1=\frac{1}{3}$,
∵VA-PFD=VP-AFD,
∴${V_{A-PFD}}=\frac{1}{3}{S_{△PFD}}•h=\frac{1}{3}•\frac{{\sqrt{6}}}{2}•h=\frac{1}{3}$,
解得$h=\frac{{\sqrt{6}}}{3}$,
即點(diǎn)A到平面PFD的距離為$\frac{{\sqrt{6}}}{3}$.
點(diǎn)評 本題考查直線與平面垂直的判定定理以及性質(zhì)定理的應(yīng)用,點(diǎn)到平面的距離距離的求法,考查計算能力以及空間想象能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,1] | B. | [1,+∞) | C. | (-∞,0] | D. | [0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{7}{25}$ | B. | $-\frac{7}{25}$ | C. | $\frac{24}{25}$ | D. | -$\frac{24}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com